Клонирование человека было или нет. Клонировать человека уже можно, но пока нельзя. Почему и надо ли? Откуда взялась компания "Клонэйд"

О. В. САБЛИНА,

кандидат биологических наук, СУНЦ НГУ

КЛОНИРОВАНИЕ ЖИВОТНЫХ

Пожалуй, ни одно из достижений биологической науки не вызывало такого накала страстей в обществе, как клонирование млекопитающих. Если некоторые люди, как биологи, так и не имеющие отношения к «Life Sciences» (наукам о жизни), с восторгом приняли появившуюся, хотя бы и теоретически, возможность клонирования человека и готовы завтра же клонироваться, то большинство неспециалистов отнеслись к такой возможности, мягко говоря, очень настороженно.

Бурные дебаты в средствах массовой информации привели к тому, что среди населения оказалось распространенным мнение о крайней опасности подобных исследований. Этому немало способствовали «клоны», «заселившие» художественную литературу и кино. Несколько лет назад одна из околонаучных группировок заявила о намерении клонировать Гитлера, для того чтобы его повесить за совершенные преступления. Это, в свою очередь, породило опасения, что диктаторы типа Гитлера могут увековечить свою власть, передав ее своим клонам. В большинстве подобных представлений клоны человека - «ненастоящие люди», тупые и злобные, а клонированные животные и растения угрожают погубить всю биосферу. Здесь следует особо отметить, что люди нередко путают клонирование и трансгенез, тогда как это абсолютно разные вещи. Действительно, при получении трансгенных многоклеточных животных применяют клонирование, однако в этом случае клонирование - не цель, а средство. Клонирование без транс-генеза - прием, широко используемый в самых разных по своим целям проектах.

Насколько обоснованы эти страхи и надежды? Представляется очень важным формирование спокойного взвешенного суждения относительно перспектив и возможных последствий этих исследований. Для этого нужно ответить на несколько основных вопросов, что мы и попытаемся сделать.

Итак, что же такое клонирование? Как клонируют животных? Почему ученые этим занимаются? Для чего можно использовать технику клонирования животных? Допустимо ли клонирование человека?

ЧТО ТАКОЕ КЛОН?

Греческое слово κλw n означает побег, отросток. Сейчас клонами называются особи животных или растений, полученные путем бесполого размножения и имеющие полностью идентичные генотипы. Клоны очень широко распространены среди растений - все сорта вегетативно размножаемых культурных растений (картофель, плодовые и ягодные растения, гладиолусы, тюльпаны и т.д.) являются клонами. Разработанная в настоящее время техника микроклонального размножения позволяет получать за короткое время огромное количество генетически идентичных экземпляров даже таких растений, которые в естественных условиях вегетативно не размножаются.

У животных такой тип размножения распространен значительно меньше. Тем не менее известно более 10 ООО видов многоклеточных животных, размножающихся путем деления одного организма на два или даже несколько частей (аутофрагмен-тация), которые вырастают в полноценные организмы. Эти новые организмы также являются клонами. Естественные клоны, возникающие путем обособления части клеток организма и развития из них полноценной особи, характерны не только для таких примитивных животных, как губки или хрестоматийные гидры. Даже такие достаточно высоко организованные животные, как морские звезды и черви, могут размножаться делением. Но позвоночные или насекомые такой способности лишены. Тем не менее клоны, возникшие естественным путем, встречаются даже у млекопитающих.

Природными клонами являются так называемые монозиготные близнецы, которые происходят из одной оплодотворенной яйцеклетки. Это происходит, когда зародыш на самых ранних стадиях дробления разделяется на отдельные бластомеры и из каждого бластомера развивается самостоятельный организм. Например, у американского девятиполосного броненосца всегда рождается по четыре монозиготных близнеца. Разделение зародыша на стадии четырех бластомеров на самостоятельные зародыши - нормальное явление для этого млекопитающего.

Такие близнецы представляют собой как бы обособившиеся части одного организма и имеют один и тот же генотип, т. е. являются клонами.

Монозиготные (или идентичные) близнецы у человека также являются клонами. Наибольшее известное число родившихся монозиготных близнецов у человека равняется пяти. Вероятность рождения близнецов у человека невелика - среди белого населения Европы и Северной Америки она в среднем составляет около 1%. Реже всего близнецы рождаются в Японии. В африканском племени йоруба частота близнецов составляет 4,5% всех рождений, а в некоторых районах Бразилии - до 10%, однако только незначительная часть из них являются монозиготными. Существуют и семьи с генетической предрасположенностью к рождению близнецов, но тоже только дизиготных.

Одновременная овуляция обусловлена определенным сбоем в работе гормональной системы, который может иметь генетическую природу. Причина же, по которой происходят разделение зародыша и образование монозиготных близнецов у человека, неизвестна. Частота этого явления - около 0,3% во всех популяциях человека.

Очень редко случается, что по неизвестной причине зародыш разделяется не до конца. Тогда рождаются сросшиеся (вернее, недоразделившиеся), так называемые сиамские близнецы. Примерно четверть всех идентичных близнецов являются «зеркальными», например, один из близнецов левша, другой правша, у одного волосы на макушке закручены по часовой стрелке, у другого против, у одного сердце расположено слева, а печень справа, у другого - наоборот. Ученые считают, что «зеркальность» близнецов является следствием разделения эмбриона на достаточно поздней стадии развития.

Таким образом, клоны животных и человека - нормальное природное явление. Этот факт сразу позволяет ответить на некоторые вопросы в связи с клонированием человека: клоны - абсолютно нормальные, полноценные люди, отличающиеся от всех остальных людей только тем, что имеют генетического двойника. Они являются самостоятельными, автономными организмами, хотя и имеющими идентичные генотипы. Поэтому любые надежды достичь бессмертия путем клонирования абсолютно беспочвенны. По этой же причине клоны не могут нести никакой ответственности за поступки, совершенные их «генетическим оригиналом».


ЭКСПЕРИМЕНТАЛЬНОЕ КЛОНИРОВАНИЕ ЖИВОТНЫХ

Клонированием называют искусственное получение клонов животных (в случае клонирования растений чаще пользуются терминами «вегетативное размножение», «меристемная культура»). Поскольку высшие животные не могут размножаться вегетативно, то для получения клона можно в принципе воспользоваться тремя методами:

Удвоить набор хромосом в неоплодот-воренной яйцеклетке, получив таким образом диплоидную яйцеклетку, и заставить ее развиваться без оплодотворения;
искусственно получить монозиготных близнецов, разделив начавший развиваться эмбрион;
удалить ядро из яйцеклетки, заменив его на диплоидное ядро соматической клетки, и тоже заставить развиваться такую «зиготу».

Все эти три возможности ученые использовали для клонирования животных.

Первый способ удается применить не для всех животных. Еще в 30-е гг. XX в. Б.Л. Астаурову удалось с помощью термического воздействия активировать неопло-дотворенное яйцо тутового шелкопряда к* развитию, блокировав при этом прохождение первого деления мейоза. Естественно, ядро при этом оставалось диплоидным. Развитие такой диплоидной яйцеклетки заканчивалось вылуплением личинок, точно повторяющих генотип матери. Естественно, при этом получались только самки. К сожалению, разводить самок экономически невыгодно, так как при большей затрате корма они дают коконы худшего качества. В.А. Струнников усовершенствовал этот метод, разработав способ получения клонов тутового шелкопряда, состоящих только из особей мужского пола. Для этого на ядро яйцеклетки воздействовали гамма-лучами и высокой температурой. Это делало ядра, не способными к оплодотворению. Ядро сперматозоида, проникшего в такое яйцо, удваивалось и приступало к делению. Это приводило к развитию самца, повторявшего генотип отца. Правда, полученные клоны для промышленного шелководства непригодны, но их используют в селекции для получения эффекта гетерозиса. Это позволяет резко ускорить и облегчить получение выдающегося по продуктивности потомства. Сейчас эти методы широко применяются в шелководстве в Китае и Узбекистане.

К сожалению, успех с тутовым шелкопрядом является исключением - у других животных получить клоны таким способом не удается. Исследователи пробовали удалить один из пронуклеусов из оплодотворенной яйцеклетки и удваивали число хромосом другого, обрабатывая их веществами, разрушающими микротрубочки веретена деления. Получались диплоидные клетки, гомозиготные по всем генам (содержащие либо два материнских, либо два отцовских генома). Такие зиготы начинали дробиться, однако развитие прекращалось на ранней стадии и получить таким способом клоны млекопитающих оказалось невозможно. Были сделаны попытки пересадить пронуклеусы из одной оплодотворенной яйцеклетки в другую. Оказалось, что полученные таким способом зародыши развивались нормально только в том случае, если один пронуклеус представлял собой ядро яйцеклетки, а другой - сперматозоида. Эти эксперименты показали, что для нормального развития эмбрионов млекопитающих необходимы два разных генома - материнский и отцовский. Дело в том, что при формировании половых клеток имеет место геномный импринтинг - метилирование участков ДНК, что приводит к выключению метилированных генов. Это выключение остается на всю жизнь. Поскольку в мужских и в женских половых клетках выключаются разные гены, то для нормального развития организма нужны оба генома - одна работающая копия гена должна быть.

Второй метод - разделение эмбриона на ранних стадиях дробления в эмбриологии используют очень давно, правда в основном на морских ежах и лягушках. Именно таким способом были получены данные о способности выделенных из зародыша бластоме-ров дать начало полноценному организму. Клоны-монозиготные близнецы млекопитающих были получены существенно позже, но искусственное разделение эмбрионов и последующая их имплантация «суррогатным матерям» уже применяются в селекции сельскохозяйственных животных для получения большого числа потомков от особо ценных родителей. В 1999 г. таким способом была клонирована обезьяна. Оплодотворение было проведено в пробирке. Зародыш на стадии восьми клеток был разделен на четыре части, и каждая двуклеточная часть была имплантирована в матку другой обезьяны. Три зародыша при этом развиваться не стали, а из четвертого родилась обезьянка, которую назвали Тетра (Четвертинка).

Самое знаменитое клонированное животное, овечка Долли, была клонирована с помощью третьего метода - переноса генетического материала соматической клетки в яйцеклетку, лишенную собственного ядра.
Метод пересадки ядер был разработан еще в 40-х гг. XX в. русским эмбриологом Г.В. Лопашовым, работавшим с яйцеклетками лягушки. Правда, взрослых лягушек он не получил. Позднее англичанину Дж. Гёрдону удалось заставить яйцеклетки лягушки с чужим ядром развиваться до получения взрослых особей. Это было выдающееся достижение - ведь он пересаживал в яйцеклетку ядра дифференцированных клеток взрослого организма. Он использовал клетки плавательной перепонки и клетки эпителия кишечника. Но и у него до взрослого состояния развивалось не более 2% таких яйцеклеток, причем выросшие из них лягушки отличались меньшими размерами и пониженной жизнеспособностью по сравнению с их нормальными сверстниками.

Пересадить ядро в яйцеклетку млекопитающего значительно труднее, так как она примерно в 1000 раз мельче, чем яйцеклетка лягушки. В 1970-х гг. в нашей стране в Институте цитологии и генетики в Новосибирске на мышах это пытался сделать замечательный ученый Л.И. Корочкин. К сожалению, его работы не получили продолжения из-за трудностей с финансированием. Зарубежные ученые продолжали исследования, однако операция трансплантации ядра оказалась слишком травматичной для мышиных яйцеклеток. Поэтому экспериментаторы пошли другим путем - стали просто проводить слияние яйцеклетки, лишенной собственного ядра, с целой неповрежденной соматической клеткой.

Группа исследователей из Рослинско-го института в Шотландии, возглавляемая Я. Вилмутом, клонировавшие Долли, использовали для слияния клеток электрический импульс. Они удаляли ядра из зрелых яйцеклеток, затем с помощью микропипетки вводили под оболочку яйцеклетки соматическую клетку, выделенную из молочной железы овцы. С помощью электрического удара клетки сливались и в них стимулировалось деление. Затем, после культивирования в течение 6 дней в искусственных условиях, начавший развиваться эмбрион на стадии морулы имплантировали в матку специально подготовленной овцы другой породы (хорошо отличавшейся фенотипически от донора генетического материала). Рождение овечки Долли стало громкой сенсацией, а у некоторых ученых возникли сомнения в том, что она действительно была клоном. Однако специальные проведенные исследования ДНК показали, что Долли - настоящий клон.

В дальнейшем техника клонирования млекопитающих была усовершенствована. Группе ученых из университета Гонолулу под руководством Риузо Янагимачи удалось с помощью изобретенной ими микропипетки осуществить перенесение ядра соматической клетки непосредственно в яйцеклетку. Это позволило им обойтись без электрического импульса, который был далеко небезопасен для живых клеток. Кроме того, они использовали менее дифференцированные клетки - это были клетки кумулуса (соматических клеток, окружающих яйцеклетку и сопровождающих ее во время движения по яйцеводу). К настоящему времени этим методом клонированы и другие млекопитающие - корова, свинья, мышь, кошка, собака, лошадь, мул, обезьяна.

ЗАЧЕМ КЛОНИРОВАТЬ ЖИВОТНЫХ?

Несмотря на огромные успехи, клонирование млекопитающих остается сложной и дорогостоящей процедурой. Почему же ученые не оставляют эти эксперименты? Прежде всего потому, что это... интересно. Причем не просто любопытно - получится или нет, уже ясно, что получится. Клонирование млекопитающих чрезвычайно важно для фундаментальной науки. Это уникальный инструмент, позволяющий исследовать один из самых сложных и интригующих вопросов биологии - как, какими путями информация, записанная последовательностью нуклеотидов в ДНК, реализуется во взрослом неповторимом организме, каким образом осуществляется точнейшее взаимодействие тысяч генов, каждый из которых «включается» и «выключается» именно в то время и в той клетке, где это необходимо. Известно, что некоторые гены, работающие на самых ранних этапах эмбриогенеза, в ходе дальнейшего развития и дифферен-цировки клеток необратимо выключаются.

Как это происходит? Можно ли заставить дифференцированную клетку претерпеть обратную дифференцировку? На последний вопрос без клонирования ответить вообще невозможно. Сам факт, что клонирование млекопитающих удается, вроде бы говорит о том, что обратная дифференцировка возможна. Однако не все так просто. Часто животные клонированы из недифференцированных - эмбриональных стволовых клеток или из клеток кумулуса. В других случаях, возможно, также были использованы стволовые клетки. В частности, овечка Долли была клонирована из клетки молочной железы беременной овцы, а при беременности под действием гормонов стволовые клетки молочной железы начинают размножаться, так что вероятность того, что экспериментаторы возьмут именно стволовую клетку, повышается. Предполагают, что именно так и было с Долли. Этим может объясняться и очень малая эффективность клонирования - ведь стволовых клеток в ткани немного.

Но, конечно, если бы у метода клонирования не было хорошо просматриваемых практических выходов, исследования не были бы столь интенсивными. Какая же практическая польза может быть от клонированных животных? В первую очередь, клонирование высокопродуктивных домашних животных может быть использовано для получения в короткий срок больших количеств элитных коров, ценных пушных зверей, спортивных лошадей и т.д. Некоторые ученые считают, что клонирование никогда не будет широко применяться в животноводстве из-за того, что эта процедура весьма дорогая. Кроме того, условием селекции всегда было генетическое разнообразие, клонирование же, тиражируя один генотип, сужает это разнообразие. Тем не менее поскольку половое размножение необходимо связано с рекомбинацией, разрушающей сочетания аллелей, клонирование может помочь сохранить уникальные генотипы. Клонирование путем разделения начавших дробиться эмбрионов уже сейчас используется в селекции крупного рогатого скота.

Особые надежды ученые возлагают на клонирование диких животных, которым грозит исчезновение. Уже в настоящее время создаются «Замороженные Зоопарки» - образцы клеток таких животных, хранящиеся в замороженном виде при температуре жидкого азота (-196°С). В Америке уже родились два детеныша дикого быка бантенга, клонированные из клеток животного, умершего в 1980 г. Его клетки были заморожены и более 20 лет хранились в жидком азоте. Клонированы также другой вид дикого быка гаур, европейский дикий баран, дикие африканские степные кошки.

Клонирование кошек - особо интересный и важный эксперимент, проведенный в Институте Природы в городе Одюбоне (США). Там были получены два клона-самки от одной кошки-донора и один клон-самец от кота по имени Джаз. Джаз, в свою очередь, был выращен из эмбриона, который в течение 20 лет хранился в замороженном состоянии в жидком азоте, а потом был выношен и рожден обычной домашней кошкой. В 2005 г. обе кошки-клоны общими усилиями родили восьмерых котят. Отцом всех восьмерых был кот-клон Джаз. Этот опыт показал, что клоны способны к нормальному размножению. Следует, однако, понимать, что с помощью клонирования вряд ли удастся «воскресить» исчезнувший вид. Тем не менее это может помочь сохранить генофонд, если использовать полученные клоны в скрещиваниях с животными, содержащимися в зоопарках. Такое использование клонов может помочь избежать негативных последствий близкородственного скрещивания, неизбежного при малой численности вида.

Здесь следует сказать и о надеждах клонировать уже исчезнувших животных - мамонта, тасманийского сумчатого волка, зебры квагги. Оптимисты предполагают, что можно использовать ДНК этих животных, сохранившуюся либо в вечной мерзлоте, либо в законсервированных тканях. Однако предпринятая попытка клонировать тасманийского сумчатого волка, последнийэкземпляр которого погиб в зоопарке в 1936 г., не удалась. Это и неудивительно, так как в распоряжении ученых не было живых клеток, а только образцы тканей, хранившиеся в спирте. Из них была выделена ДНК, но она оказалась слишком поврежденной, да и существующие в настоящее время методы не позволяют клонировать животных») не имея достаточного количества живых клеток. По этой же причине мала вероятность когда-либо клонировать мамонта. Во всяком случае, все предпринятые попытки культивировать клетки мамонта, пролежавшие тысячелетия в вечной мерзлоте, оказались безуспешными. Кроме того, следует иметь в виду, что если даже и удалось бы получить и вырастить один клон мамонта или квагги, это не было бы воскрешением вида. Из одного или даже из нескольких экземпляров получить вид нельзя. Считается, что для устойчивого существования и воспроизведения вида необходимо по крайней мере несколько сотен особей. Поэтому ископаемая ДНК или ДНК из хранящихся в спирте тканей достаточна для анализа или даже для трансгенеза, но недостаточна для клонирования. Хотя известны случаи выживания вида после катастрофического падения численности. Один из таких видов - гепард. Генетический анализ показывает, что в его истории был момент, когда его поголовье составляло 7-10 особей. Хотя гепарды и выжили, последствия близкородственного скрещивания остались - частое бесплодие, мертворождения и другие трудности с размножением. Другой такой вид - человек. В эволюционной истории человека было не менее двух эпизодов прохождения резкого падения численности вида, а для американских индейцев - даже больше (заселение Америки шло из Восточной Сибири по Берингийскому перешейку очень небольшими группами - 7-10 человек). Именно поэтому генетическое разнообразие человека невелико, следствием чего является разнообразие фенотипическое - многие гены находятся в гомозиготном состоянии.

Безусловно, незаменимым методом клонирование является для получения трансгенных животных. Хотя применяются и другие методы получения трансгенных животных, именно клонирование позволяет получать животных с заданными свойствами для практических нужд. В том же Рослинском институте в Эдинбурге, где родилась Долли, были получены и клонированные овечки Полли и Молли. Для их клонирования были использованы генетически измененные клетки, культивировавшиеся в искусственных условиях. Эти клетки, кроме обычных овечьих генов, несли человеческий ген IX фактора свертываемости крови.

Генетическая конструкция содержала промотор, экспрессирующийся в клетках молочной железы. Поэтому белок, кодируемый этим геном, выделялся с молоком. Полли была первым клонированным трансгенным млекопитающим. Ее рождение открыло новые перспективы в лечении некоторых заболеваний человека. Ведь многие болезни связаны с нехваткой определенного белка - фактора свертываемости или гормона. До сего времени такие лекарства можно было получать только из донорской крови. А ведь количество гормона в крови очень мало! Кроме того, использование препаратов крови чревато инфекционными заболеваниями - не только СПИДом, но и вирусными гепатитами, которые не менее опасны. А трансгенных животных можно тщательно отобрать и проверить, содержать их на чистейших альпийских пастбищах. Ученые подсчитали, что для того чтобы обеспечить лекарственным белком всех (!) больных гемофилией на Земле, потребуется не слишком большое стадо трансгенных животных - 35-40 коров. При этом провести трансгенез и клонирование нужно-то всего только двух животных - самки и самца, а они, размножаясь естественным путем, передадут нужный ген потомству. При этом, поскольку у самцов ген в молочной железе не работает вообще, а у самок работает только во время лактации и продукт сразу же выводится с молоком из организма, никаких неудобств или нежелательных последствий для животных этот чужой ген не представляет. Сейчас используют в качестве таких биореакторов овец, коз, кроликов и даже мышей. Правда, коровы дают существенно больше молока, но и размножаются они гораздо медленнее и лактировать начинают позже. Есть и другие возможности использования трансгенных клонов и в научных, и в практических целях, но здесь мы это рассматривать не будем.

ТРУДНОСТИ И ПРОБЛЕМЫ, ВОЗНИКАЮЩИЕ ПРИ КЛОНИРОВАНИИ МЛЕКОПИТАЮЩИХ

Несмотря на впечатляющие успехи, пока нельзя утверждать, что клонирование стало обычной лабораторной методикой. Это по-прежнему очень сложная процедура, не слишком часто приводящая к ожидаемому результату. Какие же трудности возникают при клонировании животных?
В первую очередь, это низкая эффективность клонирования. Процедуры, применяемые при клонировании млекопитающих, являются весьма травмирующими для клеток. Далеко не всем клеткам удается их благополучно пережить. Не все начавшие развиваться эмбрионы доживают до рождения. Так, чтобы получить Долли, пришлось для выделения яйцеклеток прооперировать 40 овец (см. рис. 5). Из 430 яйцеклеток удалось получить 277 диплоидных «зигот», из которых только 29 начали развиваться и были имплантированы «суррогатным» матерям. Из них дожил до рождения всего один эмбрион - Долли. Для получения клонированной лошадки Прометеи было «сконструировано» около 840 эмбрионов, из них только 17 развились до того, чтобы их можно было имплантировать «матерям». Четыре из них стали развиваться, но до рождения дожила только одна Прометея.

Другой серьезной проблемой является здоровье родившихся клонов. Как правило, когда сообщается о рождении очередного клона, подчеркивается его отменное здоровье. Действительно, многие клонированные животные, вполне здоровые при рождении, доживали до взрослого состояния и рождали нормальных детенышей. Однако потом у них проявлялись нарушения со стороны разных систем органов. Так, Долли родилась здоровой и родила нескольких здоровых ягнят, но потом начала стремительно стареть и прожила вдвое меньше, чем обычная овца. Трансгенные Полли и Молли, также клонированные в Рослинском институте, прожили еще меньше. Успешно размножились клонированные степные кошки. Правда, о продолжительности их жизни данных пока нет. А вот бычок гаур, также производивший при рождении впечатление здорового, прожил всего два дня из-за кишечного заболевания. Вопрос о здоровье клонов еще нельзя считать окончательно решенным - результаты разных исследователей противоречивы. По некоторым данным очень многие клоны обладают слабым иммунитетом, подвержены простудным и желудочно-кишечным заболеваниям и стареют в 2-3 раза быстрее своих генетических родителей. Исследования японских ученых показали, что у клонированных мышей серьезно нарушено функционирование примерно 4% генов.

Но, пожалуй, самым обескураживающим оказалось то, что клоны могут довольно сильно отличаться от оригинала. Еще В.А. Струнниковым на тутовом шелкопряде было установлено, что, несмотря на одинаковые генотипы, члены одного клона оказываются непохожими по целому ряду признаков. В некоторых клонах это разнообразие оказалось даже большим, чем в обычных, генетически разнородных, популяциях. Несколько лет назад в США родилась очередная клонированная кошечка, которую назвали Сиси (Сс, CopyCat). Генетической мамой ее была трехцветная кошка Рэйн-боу (Радуга). Сиси оказалась непохожей на маму - двухцветной. Но анализ ДНК показал, что она действительно является клоном Радуги. Различия связаны с тем, что ген рыжей окраски находится в Х-хромосоме. У самок одна из Х-хромосом оказывается инактивированной в раннем эмбриогенезе. Инактивируются Х-хромосомы случайно, состояние инактивированности в клетке и клетках-потомках сохраняется на всю жизнь. У гетерозиготной кошки рыжими оказываются те клетки, где инактивирована «нерыжая» Х-хромосома. Клон был получен из одной соматической клетки, в которой одна из Х-хромосом уже была инактивирована. У Сиси инактивированной оказалась «рыжая» Х-хромосома. У млекопитающих в Х-хромосоме находится около 5% всех генов, и клоны могут оказаться непохожими друг на друга по достаточно большому числу признаков. Кстати, такое явление известно и для природных клонов - монозиготных близнецов. Были описаны две сестры - монозиготные близнецы, одна из которых была здорова, а у другой была гемофилия. Известно, что у женщин гемофилия бывает крайне редко, только в случае гомозиготное™. У гетерозигот примерно половина «здоровых» Х-хромосом инактивирована, но оставшейся половины достаточно для нормальной свертываемости крови. Упомянутые близнецы, по-виДимому, возникли в результате разделения эмбриона на стадии, когда Х-хромосомы уже были инакти-вированы и у одной из сестер нормальная хромосома оказалась инактивированной во всех клетках организма. Результатом стало развитие заболевания у гетерозиготы.

Могут быть и другие причины непохожести клонов. Все искусственно полученные клонированные эмбрионы развиваются не в таких условиях, как оригинал. Другими являются возраст суррогатной матери, её гормональный статус, питание и т. п. А эти факторы очень важны во время эмбриогенеза. Причинами различий клона и оригинала могут быть и вариации фенотипического проявления генов (экспрессивность и пенетрантность), различия в геноме митохондрий (клоны имеют не такие митохондрии, как оригинал), отличия в рисунке инактивации (импринтинг) некоторых генов в эмбриогенезе, неустранимые различия ядер соматических и половых клеток (например, неполная дедифференцировка ядра соматической клетки, помещенного в яйцеклетку).

ПРОБЛЕМА КЛОНИРОВАНИЯ ЧЕЛОВЕКА

Именно возможность искусственного клонирования человека вызвала бурные эмоции в обществе. Количество самых полярных высказываний (диапазон их от «к концу следующего столетия население планеты будет состоять из клонов» до «какой-то фантастический роман, интересный, но абсолютно нереалистичный») не поддается исчислению. Некоторые люди уже завещают сохранить их клетки в состоянии глубокого замораживания для того, чтобы, когда техника клонирования будет отработана, воскреснуть в виде клона, обеспечив тем самым себе бессмертие. Другие думают путем клонирования преодолеть бесплодие или вырастить себе «запасные части» - органы для трансплантации. Третьи хотят облагодетельствовать человечество, населив его клонами гениев. Насколько оправданы эти оценки и чаяния? Попробуем спокойно, «без гнева и пристрастья» ответить на некоторые вопросы, возникающие в связи с понятием «клонирование человека».

Вопрос первый: возможно ли клонирование человека? Ответ однозначен: да, конечно, технически это возможно.

Вопрос второй: зачем клонировать человека? Ответов несколько, разной степени реалистичности:

1. Достижение личного бессмертия. Эту перспективу можно серьезно не обсуждать, об абсурдности этих надежд было сказано выше.
2. Выращивание гениальных личностей. Главное сомнение - а будут ли они гениальными? Слишком сложный это признак, и, хотя генетическая составляющая в его формировании не вызывает сомнения, величина этой составляющей может варьировать, а влияние средовых факторов может быть велико и непредсказуемо. И - важный вопрос - будут ли они благодарны тем, кто создал их двойников, нарушив естественное право человека на собственную неповторимость? Ведь и у монозиготных близнецов иногда возникают проблемы, связанные именно с этим аспектом.
3. Научные исследования. Сомнительно, чтобы существовали такие научные проблемы, которые можно было бы разрешить исключительно только с помощью клонов человека (об этических аспектах этого - чуть позже).
4. Использование клонирования в медицинских целях. Это именно тот вопрос, который следует обсуждать серьезно.

Предполагается, что можно использовать клонирование для преодоления бесплодия - это так называемое репродуктивное клонирование. Бесплодие, действительно, является чрезвычайно важной проблемой, многие бездетные семьи согласны на самые дорогие процедуры, чтобы иметь возможность родить ребенка.

Но возникает вопрос - а что принципиально нового может дать клонирование по сравнению, например, с экстракорпоральным оплодотворением с использованием донорских половых клеток? Честный ответ будет - ничего. Клонированный ребенок не будет иметь генотипа, являющего комбинацией генотипов мужа и жены. Генетически такая девочка будет монозиготной сестрой своей матери, генов отца у нее не будет. Точно так же клонированный мальчик для своей матери будет генетически чужд. Другими словами, получить генетически полностью «своего» ребенка с помощью клонирования бездетная семья не сможет, так же как и при использовании донорских половых клеток («дети из пробирки», полученные с помощью собственных половых клеток мужа и жены, генетически не отличаются от «обычных» детей). А в таком случае - зачем такая сложная и, что особенно важно, очень рискованная процедура? А если вспомнить, какова эффективность клонирования, представить себе, сколько нужно получить яйцеклеток, чтобы родился один клон, который к тому же, возможно, будет больным, с укороченной продолжительностью жизни, сколько эмбрионов, уже начавших жить, погибнет, то перспектива репродуктивного клонирования человека становится устрашающей. В большинстве тех стран, где технически возможно осуществление клонирования человека, репродуктивное клонирование законодательно запрещено.

Терапевтическое клонирование предполагает получение эмбриона, выращивание его до 14-дневного возраста, а затем использование эмбриональных стволовых клеток в лечебных целях. Перспективы лечения с помощью стволовых клеток ошеломляющи - излечение многих нейродегене-ративных заболеваний (например болезней Альцгеймера, Паркинсона), восстановление утраченных органов, а при клонировании трансгенных клеток - лечение многих наследственных болезней. Но посмотрим правде в лицо: фактически это означает вырастить себе братика или сестричку, а потом - убить, чтобы использовать их клетки в качестве лекарства. И если убивается не новорожденный младенец, а двухнедельный эмбрион, дела это не меняет. И, хотя, ограниченное использование терапевтического клонирования в большинстве стран не запрещено, очевидно, что человечество вряд ли пойдет по этому пути. Поэтому ученые ищут другие пути для получения стволовых клеток.

Китайские ученые с целью получения эмбриональных стволовых клеток человека создали гибридные эмбрионы путем клонирования ядер клеток кожи человека в яйцеклетках кроликов. Было получено более 100 таких эмбрионов, которые в течение нескольких дней развивались в искусственных условиях, а затем из них были получены стволовые клетки. Неизбежно возникает вопрос, что получилось бы, если такой эмбрион имплантировали бы в матку суррогатной матери и дали ему возможность развиваться. Эксперименты с другими видами животных дают основания считать, что жизнеспособный плод вряд ли бы мог развиться. Ученые надеются, что такой способ получения стволовых клеток окажется этически более приемлемым, чем клонирование человеческих эмбрионов.

Но, к счастью, оказывается, что эмбриональные стволовые клетки можно получать гораздо проще, не прибегая к сомнительным с этической точки зрения манипуляциям. У каждого новорожденного в его собственной пуповинной крови содержится довольно много стволовых клеток. Если эти клетки выделить, а затем хранить в замороженном виде, их можно будет использовать, если возникнет такая необходимость. Создавать такие банки стволовых клеток можно уже сейчас. Правда, следует иметь в виду, что стволовые клетки еще могут преподнести сюрпризы, в том числе и неприятные. В частности, есть данные о том, что стволовые клетки могут легко приобретать свойства злокачественности. Скорее всего, это связано с тем, что в искусственных условиях они изъяты из-под жесткого контроля со стороны организма. А ведь контроль «социального поведения» клеток в организме не только жесткий, но весьма сложный и многоуровневый. Но, конечно, возможности использования стволовых клеток столь впечатляющи, что исследования в этой области и поиски доступного источника стволовых клеток будут продолжаться.

И наконец, последний вопрос: допустимо ли клонирование человека?
Конечно, клонирование человека, безусловно, недопустимо, пока не преодолены технические сложности и низкая эффективность клонирования, пока не гарантирована нормальная жизнеспособность клонов. Несмотря на то, что время от времени появляются сообщения о том, что где-то родились клонированные дети, до настоящего времени ни одного документированного, достоверного случая успешного клонирования человека нет. Сенсационное сообщение о клонировании человеческих эмбрионов с очень высокой эффективностью южнокорейским ученым Ву-Сук Хваном не подтвердилось, были получены доказательства фальсификации результатов. До того чтобы клонирование стало обычной безопасной процедурой, еще очень далеко. Смысл вопроса в другом - допустимо ли клонирование человека в принципе? Какие последствия могло бы иметь применение этого способа размножения?

Одним из вполне реальных последствий клонирования может стать нарушение соотношения полов в потомстве. Не секрет, что очень и очень многие семьи во многих странах хотели бы иметь скорее мальчика, чем девочку. Уже в настоящее время в Китае возможность пренатальной диагностики пола и меры по ограничению рождаемости привели к такому положению, что в некоторых районах среди детей наблюдается значительное преобладание мальчиков. Что будут делать эти мальчики, когда придет время заводить семью?

Другое негативное следствие широкого применения клонирования - снижение генетического разнообразия человека. Оно и так невелико - существенно меньше, чем, например, даже у таких малочисленных видов, как человекообразные обезьяны. Причина этого - резкое снижение численности вида, имевшее место не менее двух раз за последние 200 тыс. лет. Следствием является большое количество наследственных заболеваний и дефектов, вызываемых переходом мутантных аллелей в гомозиготное состояние. Дальнейшее снижение разнообразия может поставить под угрозу существование человека как вида. Правда, справедливости ради следует сказать, что столь широкого распространения клонирования вряд ли следует ожидать даже в отдаленном будущем.

И наконец, не следует забывать о тех последствиях, которые мы пока не в состоянии предусмотреть.

В заключение нужно сказать вот о чем. Стремительное развитие биологии и медицины поставило перед человеком множество новых вопросов, которые никогда раньше не возникали и не могли возникнуть - допустимость клонирования или эвтаназии; возможности реанимации поставили вопрос о границе жизни и смерти; угроза перенаселения Земли требует ограничения рождаемости. С подобными проблемами человечество никогда не сталкивалось и поэтому не выработало никаких этических установок по их поводу. Именно поэтому сейчас невозможно дать ясные и четкие ответы, что можно, а что нельзя. Нужно отдавать себе отчет и вот еще в чем: можно законодательно запретить те или иные работы, но природа человека такова, что, если что-нибудь (клонирование человека, например) технически возможно, оно рано или поздно будет сделано несмотря ни на какие запреты. Именно поэтому необходимо широкое обсуждение подобных вопросов, с тем чтобы вырабатывалось осознанное отношение к таким проблемам, по которым в настоящее время невозможно дать однозначного ответа.

"Биология для школьников" . - 2014 . - № 1 . - С. 18-29.



ПостНаука развенчивает научные мифы и объясняет общепринятые заблуждения. Мы попросили наших экспертов прокомментировать популярные представления людей о репродуктивном клонировании.

Клон - это точная копия оригинала

Это скорее неточность

Есть несколько вариантов использования термина «клон»: в качестве обозначения потомства одной клетки (распространенный в научных кругах сленг) или как обозначение организма, имеющего идентичный оригиналу геном (как овечка Долли, полученная путем переноса ядра соматической клетки «оригинала» в яйцеклетку донора). Проблема в том, что в обоих случаях геномы оригинала и клона не будут идентичны из-за накопления случайных мутаций. Например, клетки нашего тела могут отличаться друг от друга набором приобретенных в процессе деления мутаций, хотя мы должны быть клоном той самой первой клетки эмбриона. Та же история с однояйцевыми близнецами, которые фактически клоны друг друга, но тем не менее различаются набором мутаций.

Если этого недостаточно для того, чтобы поверить в неидентичность клона и оригинала, можно перейти от наблюдения изменений в ДНК к эпигенному. На уровне эпигенетических изменений все наши клетки разные, клетки близнецов еще более разные, и даже колония клеток (производных одной клетки), растущих в одинаковых условиях в чашке Петри, тоже будет содержать клетки, слегка отличающиеся друг от друга эпигенетически. Таким образом, клон - это идеальное повторение оригинала в мире, где не существует ошибок репликации и эпигенетики, но в реальном мире это лишь попытка воссоздать оригинал.

Клонирование мамонта невозможно

Теоретически это возможно

Теоретически клонирование мамонта возможно, и существует отличная от нуля вероятность, что действительно найдется клетка, в которой ДНК мамонта будет неповрежденной, поэтому может быть использована для клонирования. Также существует отличная от нуля вероятность, что через какое-то время ученые смогут синтезировать полноценный неповрежденный геном мамонта. То есть теоретически это возможно, но вряд ли подобные манипуляции могут произойти в ближайшем будущем с помощью технологий клонирования, поскольку, для того чтобы найти клетку ископаемого мамонта, которая будет содержать целый набор ДНК, надо перебрать и проанализировать примерно 1014 клеток. И мне трудно сказать, сколько должно пройти времени, чтобы искусственно синтезировать полноразмерную ДНК, но на сегодняшний день в лаборатории Крейга Вентера синтезировано около 106 нуклеотидов. А нам надо будет синтезировать примерно 109 нуклеотидов, то есть для того, чтобы достичь такого технического уровня синтеза, наверное, потребуется минимум еще десяток-другой лет. Поэтому теоретически клонирование мамонта возможно, но маловероятно, что оно произойдет при жизни текущего поколения.

Сергей Киселев

доктор биологических наук, профессор, заведующий лабораторией эпигенетики Института общей генетики им. Н. И. Вавилова РАН

У клонированных животных нет родителей

Все зависит от того, кого мы считаем родителями

Каждый человек является продуктом объединения равного количества генов его родителей, которые находятся в ДНК сперматозоида отца и яйцеклетки матери. После оплодотворения каждый ген (или, вернее, почти каждый, ведь есть еще гены половых хромосом и митохондрий) присутствует в двух копиях. Гены «работают», или, как говорят ученые, экспрессируются, и в результате последовательного включения и выключения определенных генов развивается полноценный организм. У млекопитающих яйцеклетка оплодотворяется в утробе матери, там же происходит ее развитие в плод.

У клонированных животных все происходит несколько иначе. Самым первым и известным клоном была, конечно же, овечка Долли. У нее не было ни отца, ни матери в обычном смысле. Для того чтобы Долли появилась на свет, ученые взяли неоплодотворенную яйцеклетку от одной овцы и механически извлекли из нее ядро, в котором содержалась материнская генетическая информация. Далее в такую энуклеированную (nucleus - это «ядро») яйцеклетку ввели ядро, взятое из клетки вымени другой овцы. В результате возникла яйцеклетка с двойным набором генов - не потому, что половина генов принадлежала отцу, а половина - матери, а потому, что в клетке вымени овцы, у которой было взято ядро, содержался двойной набор генов.

Последняя стадия процесса клонирования идентична вынашиванию оплодотворенных яйцеклеток суррогатной матерью. Полученную яйцеклетку с двойным набором генов подсадили в утробу третьей овечки, которая и вынашивала плод - будущую Долли. В результате у Долли может быть разное количество родителей в зависимости от того, кого вы считаете родителями. С точки зрения генетики Долли, безусловно, является клоном того животного, из клетки вымени которого было взято ядро. Следовательно, ее генетические мама и папа - это родители этой овцы-донора. Суррогатной матерью является овечка, которая вынашивала Долли. А гены митохондрий она получила от третьего животного - той овцы, у которой взяли яйцеклетку, она - митохондриальная мама Долли.

Константин Северинов

доктор биологических наук, профессор Сколковского института науки и технологий (SkolTech), профессор Университета Ратгерса (США), заведующий лабораторией молекулярной, экологической и прикладной микробиологии СПбПУ Петра Великого

Клонирование человека этически недопустимо

Правда

Цели репродуктивного клонирования могут быть разные. Первая этически неоправданная цель - это воссоздание полной генетической копии организма как набора запасных частей для конкретного человека, например, с целью использования возможностей трансплантации как способа борьбы со старением, заболеваниями, с утратой работоспособности органов. Если мы выращиваем целостный организм, рассматривая его как набор запасных частей, мы нарушаем ключевую этическую догму о том, что нельзя относиться к человеку как к средству, но только как к цели. Любой объект, являющийся живым, даже если он воспроизведен искусственно, должен быть рассмотрен как цель. Ситуация с таким клонированием нарушает ключевые этические нормы.

Если мы говорим о репродуктивном клонировании не только ради выращивания организма, а ради воссоздания полноты биологического и социального, то это невозможно, потому что все генетические программы реализуются только в среде. Основные поведенческие признаки являются количественными, то есть их конкретное поведение зависит не только от нормы реакции, заложенной в генотипе, но и от влияния социума (интеллект, когнитивные способности, склонность к преступному поведению). Даже если мы повторим норму реакции генотипа, мы никогда не создадим социальных условий, позволяющих добиться сходного проявления признака. Социум очень динамичен, и мы не можем повторить его условия, воздействовавшие на конкретного человека. Кроме того, надо учитывать избирательность реакции на отдельные факторы. На человека влияют не только целенаправленно создаваемые условия, но и факторы нецеленаправленного воздействия: окружение, СМИ и другие агенты социализации. Поэтому ни целевая установка, ни механизмы реализации идеи репродуктивного клонирования не являются этически и научно оправданными.

25 января на заседании президиума правительства Российской федерации было принято решение о продлении на пять лет действия федерального закона «О временном запрете на клонирование человека». Об этом сообщила глава Минздравсоцразвития Татьяна Голикова. Незадолго до этого, 22 января, Госдума уже приняла в первом чтении правительственный законопроект о продлении запрета на клонирование человека.

Закон «О временном запрете на клонирование человека» вступил в силу 19 июня 2002 года, срок его действия истек 23 июня 2007 года. Им вводился пятилетний запрет на клонирование человека, а также на ввоз и вывоз с территории РФ клонированных эмбрионов человека на период действия закона. Фактически, начиная с этой даты законодательно вопрос клонирования в нашей стране не регулировался никак.

Согласно новому документу, этот запрет продлевается на неопределенный срок, до вступления в силу федерального закона, который будет регулировать порядок использования технологий клонирования. Депутаты предлагают признать эмбрион человека, независимо от возраста, субъектом права и приравнять его к взрослому организму.

Что такое клонирование и для чего оно нужно

Напомним, что клонированием называется создание генетически идентичной копии биологической особи, клетки или ткани.
Технически наиболее распространена следующая схема клонирования. Из яйцеклетки удаляют её собственное ядро. Взамен в клетку вставляют ядро, полученное от клонируемой особи. Затем полученную клетку можно подсадить в матку, где она, если всё пойдет гладко, разовьется в полноценный организм, генетически идентичный донору ядра. По описанной методике в 1996 году была создана знаменитая овечка Долли. В 2001 году американской компании Advanced Cell Technologies удалось вырастить эмбрион человека методом клонирования. Его развитие достигло стадии шести клеток.

Ученые из США и Японии проводили эксперименты на мышах, у которых были разрушены дофаминовые нейроны в центральной нервной системе, что сопровождалось рядом двигательных нарушений - аналогичных тем, что отмечаются у пациентов с болезнью Паркинсона . Руководитель исследования Лоренц Студер (Lorenz Studer) и его коллеги из Института Слоан-Кеттеринг (Нью-Йорк) перенесли ядра клеток кожи 24 мышей с паркинсонизмом в донорские яйцеклетки, очищенные от собственного наследственного материала.

Из эмбрионов развившихся до стадии бластоцисты (то есть состоящих из нескольких десятков клеток) ученым удалось получить 187 линий полипотентных стволовых клеток. Эти клетки были использованы для получения дофаминовых нейронов, которые вводились в головной мозг шести мышей с болезнью Паркинсона , сообщили исследователи.
По словам ученых, за 11 недель наблюдений у всех животных заметно улучшились результаты двигательных тестов, и не у кого из них не отмечалось признаков отторжения трансплантата.

Это исследование показало, что с помощью технологии клонирования можно вылечить болезнь Паркинсона у мышей, значит, в будущем она может стать эффективным методом борьбы с болезнью Паркинсона и у людей.

В январе 2008 г. представители калифорнийской компании Stemagen заявили, что им впервые удалось получить клонированные эмбрионы человека путем переноса в яйцеклетки ядер клеток кожи взрослого мужчины.

Исходным материалом для получения клонов стали донорские яйцеклетки, позаимствованные искусственного оплодотворения, и две линии клеток фибробластов, полученных из образцов кожи взрослых мужчин. Свою кожу для исследования предоставили основатель Stemagen доктор Сэмьюэл Вуд (Samuel Wood), и еще один сотрудник компании. Ядра фибробластов были перенесены в яйцеклетки, очищенные от собственного наследственного материала. По признанию самих ученых, они не применяли никаких технических новинок: аналогичная методика ядерного трансфера используется в большинстве опытов по клонированию, начиная со знаменитой овечки Долли. своего успеха ученые видят в качестве донорского материала: использованные ими яйцеклетки принадлежали абсолютно здоровым женщинам, а манипуляции с ними проводились спустя всего несколько часов после процедуры забора.

40% россиян считает клонирование живых организмов опасным экспериментом с непредсказуемыми последствиями, а 28% граждан не отказались бы обзавестись собственным клоном. Терапевтическое клонирование, то есть создание клеток, генов и органов для тяжелобольных людей, одобряют 59% россиян, преимущественно возрастная группа 20-40 лет. В тоже время, за клонирование сельскохозяйственных животных высказывается 7% респондентов, и лишь 5% опрошенных считает, что следует разрешить репродуктивное клонирование человека. Согласие с гипотетическим клонированием собственного организма выразили 37% мужчин и лишь 19% женщин. Некоторые из опрошенных готовы согласиться на клонирование за вознаграждение, другие – в случае обнаружения у них неизлечимой болезни, третьи же готовы пойти на этот шаг из чистого любопытства и тяги к экспериментам. 55% россиян заявили, что ответят на подобное предложение твердым отказом, поскольку считают, что «Человек не должен брать на себя функции самой природы или Бога».

Из 23 яйцеклеток процесс переноса ядер пережили 14, 10 из них начали делиться, а 5 развились до стадии бластоцисты - эмбриона, состоящего из нескольких десятков клеток. На этом эксперимент был завершен: чтобы исключить обвинения в подделке, клонированные эмбрионы были отправлены на генетический анализ в независимые лаборатории.

Результаты генетических тестов подтвердили, что поставленная задача была выполнена. Как минимум три из пяти бластоцист содержали ДНК мужчин-доноров, кроме того, митохондрии из плазмы клеток одной из бластоцист были идентичны митохондриям женщины, предоставившей для эксперимента яйцеклетку. (Митохондрии - клетки, обладающие собственными геномами, и их совпадение говорит о том, что цитоплазма клеток клонированных эмбрионов действительно принадлежит донору яйцеклетки, как это и должно быть при клонировании).

Правда, для практических целей полученные клоны не были использованы: партия эмбрионов была полностью израсходована на генетические тесты.

Взгляд в будущее

В 2005 году была принята Декларация ООН по клонированию человека, 50 государств, в том числе Россия, ввели на национальном уровне запрет на клонирование человека. Производство же клонов животных не регламентировано ни в одной стране. В настоящее время репродуктивное клонирование человека, т.е. клонирование с целью размножения, вызывает однозначно негативную оценку. Что касается клонирования в исследовательских, а в будущем, возможно, и в терапевтических целях, то с ним ситуации пока остается неопределенной. ООН напрямую не запрещает такие эксперименты, но и не разрешает. Клонирование клеток человеческого эмбриона для исследовательских целей разрешено в Великобритании, Бельгии, Швеции, Австралии.

В практической медицине живой интерес к данному типу клеток обусловлен во-первых тем, что они являются стволовыми и, будучи недифференцированными, потенциально могут превратиться в любую . Во-вторых, в результате клонирования можно получить клетки, идентичные по генотипу клеткам пациента. Их трансплантация не приведет к несовместимости и не потребует применения иммуносупрессоров — средств, имеющих массу побочных эффектов.

Как считают многие специалисты, снятие запрета на клонирование человеческих клеток открывает новые возможности для лечения неизлечимых заболеваний, таких как сахарный диабет , рак или болезни Альцгеймера и Паркинсона, параличи, травмы спинного и головного мозга.

В настоящее время стволовые клетки пытаются использовать для лечения ряда заболеваний, при которых собственные клетки пациента погибают. Среди них — дегенеративные поражения головного и спинного мозга, постинфарктный кардиосклероз, поражения мышц. К примеру, современная медицина практически бессильна при потере функций спинного мозга вследствие травмы. Есть меры, позволяющие минимизировать количество погибших клеток, а также ускорить реабилитацию, но нет способов восстановить разрушенные участки спинного мозга. Возможно, что с помощью стволовых клеток эту задачу со временем удастся решить: подсаженные клетки дифференцируются в нейроны и заместят погибшие участки спинного мозга.

Однако эта привлекательная перспектива является скорее теоретической: в экспериментах эмбриональные стволовые клетки при введении в организм начинают неконтролируемо делиться, формируя опухоли-тератомы. Возможно, эту проблему в будущем удастся решить, однако пока отношение к эмбриональным стволовым клеткам более чем сдержанное. Ещё одна проблема заключена в процессе получения яйцеклеток: их можно получить только от женщин, создание in vitro пока не разработано. Перед донорством приходится стимулировать репродуктивную систему женщины большими дозами гормонов, что отрицательно сказывается на её здоровье. Пока для клонирования используются яйцеклетки, оставшиеся ненужными при экстракорпоральном оплодотворении.

Кстати
Британские ученые используют технологию клонирования, чтобы спасти одно из редчайших животных на Земле - северного белого носорога, который находится на грани вымирания.

В Малайзии специалисты пытаются клонировать вымирающий вид черепах. В Дубае существует Центр репродукции верблюдов,в котором появилась на свет первая в мире клонированная верблюдица.

Китайским ученым впервые в мире удалось клонировать кролика с использованием эмбриональных клеток. Впервые кролика клонировали французские ученые в 2002 году, но они использовали клетки взрослого животного. Отметим, что к настоящему времени ученым удалось клонировать свиней с использованием стволовых клеток костного мозга, клонировать кролика из клеток эмбриона, а также клонировать сперматозоиды. Всего в мире ученые уже клонировали мышей, собак, волков.

А в нашей стране иркутские растениеводы научились клонировать розы, которые перестали размножаться с помощью черенков.

Клон - это идентичный близнец другого человека, отсроченный во времени. В сущности, речь идет даже не о клонировании, а о получении копии отдельного индивида, поскольку термин «клонирование» предполагает получение некоего множества особей. Но слово уже прижилось, поэтому используется по-прежнему. Научно-фантастические романы и кинофильмы создали у людей впечатление, будто человеческие клоны окажутся бездумными зомби, монстрами вроде Франкенштейна или двойниками.

На самом же деле существует мнение, что клоны человека будут обычными человеческими существами. Их будет вынашивать обычная женщина в течение 9 месяцев, они родятся и будут воспитываться в семье, как и любой другой ребенок. Им потребуется 18 лет, чтобы достичь совершеннолетия, как и всем остальным людям. Следовательно, клон-близнец будет на несколько десятилетий младше своего оригинала, поэтому нет опасности, что люди будут путать клона-близнеца с оригиналом. Так же как и идентичные близнецы, клон и донор ДНК будут иметь различные отпечатки пальцев. Клон не унаследует ничего из воспоминаний оригинального индивида. Благодаря всем этим различиям, клон - это не ксерокопия или двойник человека, а просто младший идентичный близнец. Человеческие клоны будут иметь те же самые юридические права и обязанности, как и любой другой человек. Клоны будут человеческими существами в самом полном смысле. Основные моменты, из-за которых клонирование человека вызывает множество возражений, следующие:

· становление человека как личности, базируется не только на биологической наследственности, оно определяется также семейной, социальной и культурной средой. При клонировании индивида невозможно воссоздать все те условия воспитания и обучения, которые сформировали личность его прототипа (донора ядра).

· при бесполом размножении изначально жесткая запрограммированность генотипа предопределяет меньшее разнообразие взаимодействий развивающегося организма с изменяющимися условиями среды (по сравнению с половым размножением, когда в формировании индивида участвуют два генома, сложным и непредсказуемым образом взаимодействующие между собой и с окружающей средой). Это возражение базируется на т.н. экстремальной экстраполяции. На планете существует более 5 млрд. людей. Очевидно, на первых порах клонирование человека будет производиться очень в скромных масштабах из-за предполагаемой стоимости процедуры. Кроме того, большинство женщин все же не захотят быть матерями клонов-близнецов. Пройдет много десятилетий прежде, чем общее количество клонов людей достигнет хотя бы 1 млн. человек во всем мире. По процентному соотношению, это составило бы микроскопическую часть от общего населения и не оказало бы никакого воздействия на генетическое разнообразие людей. Но в дальнейшем ограничения станут необходимыми. Но где провести черту? Этот вопрос может оказаться неразрешимым.

· практически все религиозные учения настаивают, что появление человека на свет - в «руках» высших сил, что зачатие и рождение должно происходить только естественным путем.

· считается, что клонирование человека может привести к созданию уродов и монстров. Клонирование человека часто сопоставляется с генной инженерией человека. При клонировании ДНК копируется, в результате чего появляется еще один человек, точный близнец существующего индивида и следовательно - не монстр или урод. Генная же инженерия подразумевает модификацию человеческой ДНК, в результате чего может появиться человек, непохожий ни на одного другого, ранее существовавшего. Это предположительно могло бы привести к созданию очень необычных людей, даже монстров. Генная инженерия человека, имея большой позитивный потенциал, действительно очень рискованное предприятие, и должна была бы проводиться только с величайшей осторожностью и под надзором. Клонирование же безопасно и банально по сравнению с генной инженерией. Это часто выступает доводом в защиту клонирования: «Если вы опасаетесь клонирования человека, то генная инженерия человека вас должна просто ужасать».

· технология не совершенна, она может привести к смерти плода. Ни одна сфера человеческой деятельности не свободна от случайной смерти. Клонирование человека - не исключение. Некоторые из клонированных в Раслине овечек были мертворожденные. В настоящий момент технология клонирования млекопитающих находится в экспериментальной стадии и процент успешных исходов пока что низкий. Судя по дополнительным экспериментам на высших млекопитающих, можно предвидеть, что процедура клонирования будет усовершенствованна вплоть до такого качества, когда риск выкидыша или смерти ребенка будет такой же, что и для остальных рождений

В то же время существует как минимум две веские причины в защиту клонирования:

· предоставить возможность семьям зачать детей-близнецов выдающихся личностей;

· позволить бездетным парам иметь детей.

Клонирование выдающихся людей явление весьма неоднозначное. В настоящее время невозможно с уверенностью сказать, какой процент близнецов выдающихся людей будет делать равные по значимости вклады в науку, и будет ли давать вообще. В то же время это может сократить вливание посторонних талантов в научную сферу. Однако если запретить клонирование, этого мы никогда и не узнаем. Решительность и энергичность - несомненно, важные характеристики многих выдающихся людей. Есть предположения, что на них сильно влияет генетика. Если же обнаружится, что клоны выдающихся людей не оправдывают репутацию своих предшественников, то стимул для клонирования людей ослабнет. Тогда мы увидим, что люди, будучи информированными, захотят производить клонирование менее часто.

Кроме всего прочего, клонирование человека - это новое и неисследованное правовое поле, которое определенно потребует некоторого законодательного регулирования для предотвращения злоупотреблений.

Интересный, но малоизвестный факт процедуры клонирования, что она производится с замороженными, а не свежими клетками. Это означает, что нет необходимости, чтобы донор ДНК, будь то животное или человек, были живы, когда производится клонирование. Если образец ткани человека заморожен должным образом, человека можно было бы клонировать через длительное время после его смерти. В случае людей, которые уже умерли, и чья ткань не была заморожена, клонирование становится более сложным, и сегодняшняя технология это делать не позволяет. Однако для любого биолога было бы очень смелым заявить, что это невозможно. Если наука сможет разработать метод для получения клона из ДНК уже умершего существа перед ней откроются новые возможности.

Все ткани человека содержат ДНК и могут потенциально быть источником для клонирования. Перечень тканей включает человеческие волосы, кости и зубы. Однако, ДНК начинает медленно разлагаться через несколько недель после смерти, разрушая сегменты генетического кода. Например, по прошествии 60 миллионов лет, сохранились только короткие фрагменты ДНК динозавров, поэтому шансы воспроизведения парка Юрского периода невелики. Однако существуют хорошие шансы восстановления последовательности ДНК из образцов человеческой ткани, т. к. времени прошло существенно меньше. Представьте себе генетический код как книгу, из которой с течением времени случайным образом удаляются абзацы или страницы. Если у нас есть только одна копия книги, полный текст не может быть восстановлен. К счастью, у нас есть больше, чем одна копия. В кости или образце ткани могут быть многие тысячи клеток, каждая со своей копией кода ДНК. Это подобно обладанию тысячами копий той же самой книги. Если какая-либо страница удалена из одной книги, эта страница может оказаться целой невредимой в другой, поэтому, комбинируя информацию из многих клеток, можно в точности восстановить исходный генетический код. Еще один обнадеживающий фактор - что только небольшой процент из трех миллиардов символов генетического кода человека отвечает за индивидуальные различия. Например, генетические коды шимпанзе и людей на самом деле на 99% совпадают. Это означает, что восстанавливать придется менее 1% кода, т.е. только ту часть, которая определяет индивидуальные различия между людьми. Все это за пределами сегодняшней технологии, но принципиально осуществимо.

Очевидно, что клонирование человека имеет громадные потенциальные преимущества и несколько возможных отрицательных последствий. Как и со многими научными достижениями прошлого, такими как самолеты и компьютеры, единственная угроза - это угроза нашей собственной узкой умственной самоудовлетворенности. Клоны человека могут сделать большой вклад в области научного прогресса и культурного развития. В определенных случаях, где предвидятся возможные злоупотребления, их можно предотвратить с помощью узконаправленного специализированного законодательства. С каплей здравого смысла и разумным регулированием, клонирование человека - не есть нечто, чего нужно бояться. Нам следует ожидать его с волнительным нетерпением и поддерживать научные исследования, которые ускорят осуществление клонирования. Исключительные люди находятся среди величайших сокровищ мира. Клонирование человека позволит нам сохранить, а со временем даже восстановить эти сокровища.

Интернет