Измеряем КСВ: теория и практика. Схема, описание. Правила настройки антенны и измерения ксв Большое ксв

Вы стали счастливым обладателем портативной или автомобильной радиостанции? Теперь настал черед подготовить рацию к работе. Механическая часть работы, описанная производителем в инструкции, не вызывает проблем - для этого нужен минимальный набор инструментов и немного сообразительности. А вот с настройкой антенны не все так просто.

Если, следуя схеме, механически соединить провода, то, скорее всего, вас не будет слышно. Начинаем разбираться, и возникает вопрос: что такое коэффициент стоячей волны антенны, или SWR, если инструкция на английском.

Это коэффициент, который показывает, какая часть энергии радиоволны уходит на антенну, а какая часть возвращается назад в фидер. Без правильной настройки КСВ ваша рация не будет работать корректно и не обеспечит комфортного общения.

Коэффициент стоячей волны антенны

Если совсем просто, то это цифра на измерительном приборе, характеризующая правильность настроек вашей радиостанции. Разберемся в физической сути КСВ.

Радиоволны распространяются в волноводе - антенно-фидерном тракте. То есть сигнал, поступающий от передатчика, попадается на антенну посредством кабельного соединения-фидера. Не вникая в теорию волн, пользователю радиостанции нужно понимать, что в любом волноводе присутствуют падающие и отраженные волны. Падающие волны поступают непосредственно на антенну, а отраженные возвращаются назад в фидер и ничем, кроме обогрева окружающей атмосферы, не занимаются. Все волны имеют свойство складываться. В результате сложения амплитуд отраженных и падающих волн создает неравномерное поле по всей длине фидера-кабеля. Таким образом формируются обратные потери КСВ. Чем их больше, тем слабее сигнал вашей радиостанции и тем хуже вас будут слышать абоненты.

Специалисты различают коэффициенты стоячих волн по напряжению (КСВН) и по мощности (КСВ). Практически эти понятия настольно взаимосвязаны, что для пользователя, производящего настройку своей радиостанции, разницы нет никакой.

Коэффициент стоячей волны: формула расчета

Коэффициент KSV при настройке радиостанции не рассчитывается по формулам, а определяется с помощью специального прибора. Что такое КСВ метр? Это несложное для пользователя электронное устройство, которое показывает разницу амплитуд колебаний, а это и есть коэффициент стоячей волны.

Формула КСВ расчета не самая сложная:

КСВ = Umax/Umin

В ней в числителе и знаменателе максимальные и минимальные амплитуды:

  • Umax - сумма мощностей падающей и отраженной волны;
  • Umin - разнице между модностью падающего и отраженного сигнала.

Несложно сделать вывод, что при равенстве Umax и Umin КСВ будет равен единице и это идеальные условия для эффективной работы вашей радиостанции. Но, поскольку идеальных условий в природе не существует, то при настройке КСВ антенны вам придется постараться подтянуть КСВ к единице.

Что может быть причиной повышенного КСВ? Факторов множество:

  • волновое сопротивление кабеля и источника радиосигнала;
  • некорректная спайка, неоднородность волноводов;
  • некачественная разделка кабеля в мочках разъемов;
  • переходники;
  • повышенное сопротивление в месте соединения кабеля с антенной;
  • некачественная сборка передатчика и КСВН антенны.

Если не вдаваться в формулы расчета КСВ, которые для владельца автомобильной радиостанции представляют мало интереса, то перейдем к практическому аспекту настройки антенны.

Как измерить КСВ

Прежде всего, вам нужен КСВ-метр. Его можно купить или взять в аренду. Затем:

  • включите рацию и установите ее переключатель в положение SWR;
  • нажмите передачу на тангенте и регулятором КСВ-метра выведите стрелку на максимум;
  • щелкните REF и снова нажмите на тангенту;
  • посмотрите, что показывает стрелочка на шкале SWR - это и есть ваш КСВ.

Он, конечно же, будет далек от идеала-единицы, но зато вам есть теперь чем заняться. Кстати, при показателе в пределах:

  • 1,1-1,5 работать можно;
  • 1,5-2,5 - в принципе удовлетворительно;
  • больше 2,5 - нужно поработать.

Что делать? Это предмет отдельной большой статьи или повод обратиться к мастеру, знающему, что такое КСВ и как с ним работать.

Купить прибор для определения КСВ вы можете прямо сейчас на нашем сайте. В каталоге вашему вниманию представлены профессиональные и любительские модификации брендов VEGA и Optim, которые можно использовать не только при установке антенны, но и для постоянного мониторинга работы радиостанции.

При монтаже и настройке систем радиосвязи часто измеряют некую не всем и не совсем ясную величину называемую КСВ. Что же это за характеристика, помимо спектра частот указываемая в характеристиках антенн?
Отвечаем:
Коэффициент стоячей волны (КСВ), коэффициент бегущей волны (КБВ), обратные потери это - термины, характеризующие степень согласования радиочастотного тракта.
В высокочастотных линиях передачи соответствие сопротивления источника сигнала волновому сопротивлению линии определяет условия прохождения сигнала. При равенстве этих сопротивлений в линии возникает режим бегущей волны, при котором вся мощность источника сигнала передается в нагрузку.

Измеренное на постоянном токе тестером сопротивление кабеля покажет либо холостой ход либо короткое замыкание в зависимости оттого, что подключено к другому концу кабеля, а волновое сопротивление коаксиального кабеля, определяется соотношением диаметров внутреннего и внешнего проводников кабеля и характеристиками изолятора между ними. Волновое сопротивление это сопротивление, которое оказывает линия бегущей волне высокочастотного сигнала. Волновое сопротивление постоянно вдоль линии и не зависит от её длины. Для радиочастот волновое сопротивление линии считают неизменным и чисто активным. Оно приблизительно равно:
где L и С распределенные емкость и индуктивность линии;




Где: D – диаметр внешнего проводника, d – диаметр внутреннего проводника, - диэлектрическая проницаемость изолятора.
При расчете радиочастотных кабелей стремятся получить оптимальную конструкцию, обеспечивающую высокие электрические характеристики при наименьшем расходе материалов.
При использовании меди для внутреннего и внешнего проводников радиочастотного кабеля справедливы соотношения:
минимальное затухание в кабеле достигается при отношении диаметров

максимальная электрическая прочность достигается при:

максимум передаваемой мощности при:

исходя из этих соотношений, выбраны волновые сопротивления радиочастотных кабелей, выпускаемых промышленностью.
Точность и стабильность параметров кабеля зависят от точности изготовления диаметров внутреннего и внешнего проводников и стабильности параметров диэлектрика.
В идеально согласованной линии отражение отсутствует. Когда сопротивление нагрузки равно волновому сопротивлению линии передачи, падающая волна полностью поглощается в нагрузке, отраженная и стоячая волны отсутствуют. Такой режим называется режимом бегущей волны.
При коротком замыкании или холостом ходе линии на конце линии, падающая волна полностью отражается обратно. Отраженная волна складывается с падающей, и результирующая амплитуда в любом сечении линии является суммой амплитуд падающей и отраженной волн. Максимум напряжения называется пучностью, минимум напряжения узлом напряжения. Узлы и пучности не движутся относительно линии передачи. Такой режим называется режимом стоячей волны.
Если на выходе линии передачи подключена произвольная нагрузка, только часть падающей волны отражается обратно. В зависимости от степени рассогласования возрастает отраженная волна. В линии одновременно устанавливаются стоячая и бегущая волны. Это режим смешанных или комбинированных волн.
Коэффициент стоячей волны (КСВ) это безразмерная величина, характеризующая соотношение падающей и отраженной волн в линии, то есть степень приближения к режиму бегущей волны:
; как видно по определению, КСВ может меняться от 1 до бесконечности;
КСВ меняется пропорционально соотношению сопротивления нагрузки к волновому сопротивлению линии :

Коэффициент бегущей волны это величина обратная КСВ:
КБВ= может меняться от 0 до 1;

  • Обратные потери (return loss) - это отношение мощностей падающей и отраженной волн, выраженное в децибелах.

или наоборот:
Обратные потери удобно использовать при оценке эффективности фидерного тракта, когда потери кабеля, выражаемые в дБ/м можно просто просуммировать с обратными потерями.
Величина потерь на рассогласование зависит от КСВ:
в разах или в децибелах.
Передаваемая энергия при несогласованной нагрузкевсегда меньше, чем при согласованной. Передатчик, работающий на несогласованную нагрузку, не отдает в линию всю ту мощность, которую бы отдавал в согласованную. Фактически, это не потери в линии, а снижение мощности, отдаваемой в линию передатчиком. Насколько влияет КСВ на снижение, видно из таблицы:

Мощность попадающая в нагрузку

Обратные потери
RL

Важно понимать, что:

  • КСВ одинаков в любом сечении линии и не может регулироваться изменением длины линии. Если показания измерителя КСВ при перемещении по линии существенно различаются, это может указывать на антенный эффект фидера, вызываемый током, текущим по внешней стороне оплетки коаксиального кабеля, и/или на плохую конструкцию измерителя, но не на то, что КСВ изменяется вдоль линии.
  • Отраженная мощность не попадает обратно в передатчик не нагревает и не повреждает его. Повреждения могут быть вызваны работой выходного каскада передатчика на рассогласованную нагрузку. Выход из передатчика, поскольку на его выходе могут в неблагоприятном случае сложиться напряжение выходного сигнала и отражённая волна, может произойти из-за превышения максимального допустимого напряжения полупроводникового перехода.
  • Высокий КСВ в коаксиальном фидере, вызванный значительным рассогласованием характеристического сопротивления линии и входного сопротивления антенны, сам по себе не вызывает появления ВЧ тока на внешней поверхности оплетки кабеля и излучения фидерной линии.

Измеряют КСВ, например, с помощью двух направленных ответвителей, включённых в тракт в противоположных направлениях или измерительного мостового рефлектометра, что позволяет получить сигналы пропорциональные падающему и отраженному сигналу.

Для измерения КСВ могут использоваться различные приборы. Сложные приборы имеют в своем составе генератор качающейся частоты, позволяющий увидеть панорамную картину КСВ. Простые приборы состоят из ответвителей и индикатора, а источник сигнала используется внешний, например, радиостанция.

Например, двухблочный РК2-47 за счет широкополосного мостового рефлектометра обеспечивал измерение в диапазоне 0,5-1250MГц.


Р4-11 служил для измерения КСВН, фазы коэффициента отражения, модуля и фазы коэффициента передачи в диапазоне 1-1250МГц.
Импортные приборы для измерения КСВ ставшие классическими от Bird и Telewave:

Или попроще и подешевле:

Популярны простые и недорогие панорамные измерители от AEA:

Измерение КСВ может проводиться как в конкретной точке спектра, так и в панораме. В этом случае на экране анализатора могут быть выведены значения КСВ в указанном спектре, что удобно для настройки конкретной антенны и исключает промах при обрезке антенны.
К большинству системных анализаторов существуют control head - рефлектометрические мосты, позволяющие с высокой точностью измерять КСВ в частотной точке или в панораме:

Практическое измерение заключается в подключении измерителя к разъёму испытуемого устройства или в разрыв тракта при использовании прибора проходного типа. Значение КСВ зависит от многих факторов:

  • Перегибов, дефектов, неоднородностей, спаек в кабелях.
  • Качества разделки кабеля в радиочастотных соединителях.
  • Наличия переходных соединителей
  • Попадания влаги в кабели.

При измерении КСВ антенны через фидер с потерями, испытательный сигнал в линии затухает и фидер внесет погрешность, соответствующую потерям в нем. И падающая, и отраженная волны испытывают затухание. В таких случаях КСВН рассчитывается:
где k - коэффициент ослабления отраженной волны, который вычисляется: k=2BL ; В - удельное затухание, дБ/м; L - длина кабеля, м, при этом
множитель 2 учитывает, что сигнал ослабляется дважды - на пути к антенне и на пути от антенны к источнику, на обратном пути.
Например, используя кабель с удельным затуханием 0,04 дБ/м, ослабление сигнала на длине фидера 40 метров составит 1,6 дБ в каждую сторону, всего 3,2 дБ. Значит, вместо действительного значения КСВ=2,0 прибор покажет 1,38; при КСВ=3,00 прибор покажет около 2,08.

Например, если Вы проверяете фидерный тракт с потерями 3дБ, антенну с КСВ 1,9 и используете передатчик мощностью 10 Вт как источник сигнала для проходного измерителя, то падающая мощность, измеренная прибором составит 10Вт. Поданный сигнал ослабится фидером в 2 раза, от антенны отразится 0,9 пришедшего сигнала и, наконец, отраженный сигнал на пути к прибору ослабится ещё в 2 раза. Прибор честно покажет соотношение падающего и отраженного сигналов падающая мощность 10Вт и отраженная 0,25Вт. КСВ получится 1,37 вместо 1,9.

Если будет использоваться прибор с встроенным генератором, то мощности этого генератора может оказаться недостаточной, чтобы на детекторе отраженной волны создать нужное напряжение и Вы увидите шумовую дорожку.

В общем случае, усилия, затрачиваемые на снижение КСВ ниже 2:1 в любой коаксиальной линии не дают результата с точки зрения увеличения эффективности излучения антенны, и целесообразны в тех случаях, если схема защиты передатчика срабатывает, например, при КСВ>1,5 или расстраиваются частотнозависимые цепи, подключенные к фидеру.

Наша компания предлагает широкий спектр измерительного оборудования различных производителей вкратце рассмотрим их:
MFJ
MFJ-259 – достаточно простой в эксплуатации прибор для комплексного измерения параметров систем работающих в диапазоне от 1 до 170 МГц.

КСВ-метр MFJ-259 очень компактный, его можно использовать как с внешним источником питания низкого напряжения, так и с внутренним комплектом батарей типа АА.

MFJ-269
КСВ-метр MFJ-269 компактным комбинированным прибор с автономным питанием.
Индикация режимов работы осуществляется на жидкокристаллическом дисплее, а результатов измерений - на ЖКД и стрелочных приборах, расположенных на лицевой панели.
MFJ-269 позволяет производить большое количество дополнительных антенных измерений: РЧ импеданса, потерь в кабелях и их электрических длин до места обрыва или короткого замыкания.


Технические характеристики

Диапазон частот, МГц

Измеряемые характеристики

  • электрическую длину (в футах или градусах);
  • потери в фидерных линиях (дБ);
  • ёмкость (пФ);
  • импеданс или значение Z (ом);
  • фазовый угол импеданса (в градусах);
  • индуктивность (мкГн);
  • реактивное сопротивление или Х (ом);
  • активное сопротивление или R (ом);
  • резонансную частоту (МГц);
  • обратные потери (дБ);
  • частоту сигнала (МГц);
  • КСВ (Zo программируется).

200х100х65 мм

Диапазон рабочих частот КСВ-метра разбит на поддиапазоны:1,8…4 МГц, 27…70 МГц, 415…470 МГц, 4,0…10 МГц, 70…114 МГц, 10…27 МГц, 114…170 МГц

Измерители КСВ и Мощности Comet
Серия измерителей мощности и КСВ Comet представлена тремя моделями:CMX-200 (Измеритель КСВ и мощности, 1,8-200 МГц, 30/300/3 кВт), CMX-1(Измеритель КСВ и мощности, 1,8-60 МГц, 30/300/3 кВт) и, представляющий наибольший интерес, CMX2300 T (Измеритель КСВ и мощности, 1,8-60/140-525 МГц, 30/300/3 кВт, 20/50/200 Вт)
CMX2300 T
Измеритель мощности и КСВ CMX-2300 состоит из двух независимых систем диапазона 1.8-200МГц и диапазона 140-525 МГц с возможностью одновременного измерения этих диапазонов. Проходная структура прибора и, как следствие, невысокая потеря мощности позволяет проводить измерения в течении длительного времени.


Технические характеристики

Диапазон М1

Диапазон М2

Частотный диапазон

1.8 - 200 МГц

140 - 525 МГц

Площадь измерения мощности

0 - 3КВт (HF), 0 - 1КВт (VHF)

Диапазон измерения мощности

Погрешность измерения мощности

±10% (всей шкалы)

Область измерения КСВ

от 1 до бесконечности

Сопротивление

Остаточный КСВ

1.2 и менее

Вносимое затухание

0.2 дБ или менее

Минимальная мощность для измерений КСВ

Приблизительно 6Вт.

М-образный

Питание для ламп подсветки

11 - 15В постоянного тока, приблизительно 450 мА

Габариты (данные в скобках с учетом выступов)

250(Ш) х 93 (98) (В) х 110 (135) (Г)

Приблизительно 1540 г.

Измерители мощности и КСВ Nissen
Зачастую для работы на объекте не требуется сложный и дающий полную картинку, а скорее функциональный и простой в использовании прибор. Именно такими «Рабочими лошадками» и является серия измерителей мощности и КСВ Nissen.
Простая проходная структура и высокое предельное значение мощности до 200 Вт совместно с частотным спектром 1,6-525МГц делают приборы Nissen весьма ценным подспорьем там где необходима не комплексная характеристика линии а быстрота и точность измерения.
NISSEI TX-502
Характерным представителем серии измерителей Nissen может послужить Nissen TX-502. Измерение прямых и обратных потерь, измерение КСВ, стрелочная панель с явно видимой градуировкой. Максимум функционала при лаконичном исполнении. И при этом в процессе настройки антенн этого зачастую вполне хватает для быстрого и оперативного развертывания системы связи и наладки канала.

В линии с КСВ>1 наличие отраженной мощности не приводит к потерям передаваемой мощности, хотя некоторые потери наблюдаются из-за конечного затухания в линии в фидерной линии без потерь нет потерь мощности из-за отражения независимо от величины КСВ. На всех KB диапазонах с кабелем, имеющим низкие потери, потери в рассогласованной линии обычно незначительны, однако на УКВ могут быть существенными, а на СВЧ-даже чрезвычайно большими. Затухание в кабеле зависит, прежде всего, от характеристик самого кабеля и его длины. При работе на KB кабель должен быть очень длинным или очень плохим, чтобы потери в кабеле стали весьма существенными.

Отраженная мощность не течет обратно в передатчик и не повреждает его. Повреждения, иногда приписываемые высокому КСВ, обычно вызывает работа выходного каскада передатчика на рассогласованную нагрузку. Передатчик не «видит» КСВ, он «видит» только импеданс нагрузки, который зависит и от КСВ. Это означает, что импеданс нагрузки можно сделать точно соответствующим требуемому (например, с помощью антенного тюнера), не беспокоясь о КСВ в фидере.

Усилия, затрачиваемые на снижение КСВ ниже 2:1 в любой коаксиальной линии, вообще представляются затраченными впустую - с точки зрения увеличения эффективности излучения антенны, но целесообразны в том случае, если схема защиты передатчика срабатывает, например, при КСВ>1,5.

Высокий КСВ не обязательно указывает, что антенна работает плохо - эффективность излучения антенны определяется соотношением ее сопротивления излучения к общему входному сопротивлению.

Низкий КСВ - не обязательно свидетельство того, что антенная система является хорошей. Напротив, низкий КСВ в широкой полосе частот является поводом для подозрений, что, например, в диполе или вертикальной антенне велико сопротивление потерь, обусловленное плохими соединениями и контактами, неэффективной системой заземления, потерями в кабеле, попаданием влаги в линию и т.д. Так, эквивалент нагрузки обеспечивает в линии КСВ=1,0, но он вообще не излучает, а короткая вертикальная антенна с сопротивлением излучения 0,1 Ом и потерями сопротивления 49,9 Ом излучает лишь 0,2% от поступающей мощности, обеспечивая при этом КСВ 1,0 в фидере.

Для достижения максимального ВЧ тока излучатель антенной системы не обязательно должен иметь резонансную длину и не требует фидера определенной длины. Существенное рассогласование между линией питания и излучателем не препятствует поглощению излучателем всей реально поступающей мощности. При использовании соответствующего согласования (например, антенного тюнера) для компенсации реактивности не резонансного излучателя в месте подключения фидерной линии случайной длины антенная система является согласованной, и фактически вся подводимая мощность может эффективно излучаться.

На КСВ в фидерной линии не влияет настройка антенного тюнера, установленного возле передатчика . Низкий КСВ в линии, достигнутый с помощью тюнера, обычно является свидетельством того, что в процессе настройки тюнера произошло рассогласование между передатчиком и входом антенного тюнера, и передатчик работает на несогласованную нагрузку.

Вопреки расхожим представлениям, с хорошим симметричным (балансным) антенным тюнером и открытой двухпроводной фидерной линией излучение питаемого в центре диполя длиной 80 м, работающего в диапазоне 3,5 МГц, не намного эффективнее излучения такой же антенны длиной 48 м, работающей в том же диапазоне и с той же мощностью передатчика. Эффективность излучения диполя, настроенного в резонанс на частоте, например, 3750 кГц, практически такая же, как и на частоте 3500 или 4000 кГц при использовании любого фидера разумной длины; хотя можно ожидать, что КСВ на краях диапазона может достигать 5 и что коаксиальный кабель в действительности будет работать как настроенная линия. В этом случае, разумеется, потребуется использовать соответствующее устройство согласования (например, антенный тюнер) между передатчиком и фидером. Если для достижения согласования коаксиальный фидер любой антенной системы требует определенной длины, тот же самый входной импеданс можно получить с кабелем любой длины с помощью соответствующей простой цепи согласования из индуктивностей и емкостей.

Высокий КСВ в коаксиальном фидере, вызванный значительным рассогласованием характеристического сопротивления линии и входного сопротивления антенны, сам по себе не вызывает появления ВЧ тока на внешней поверхности оплетки кабеля и излучения фидерной линии . В диапазонах коротких волн высокий КСВ в любой открытой линии, работающей с высоким КСВ, не будет ни вызывать протекание антенного тока по линии, ни приводить к излучению линии при условии, что токи в линии сбалансированы, и расстояние между проводниками линии мало по сравнению с рабочей длиной волны (это справедливо и на УКВ при условии отсутствия острых изгибов линии). Ток на внешней поверхности оплетки фидера и излучение фидера практически отсутствуют, если антенна сбалансирована относительно земли и фидера (например, при использовании горизонтальной антенны фидер должен располагаться вертикально); в таких случаях не нужно применять симметрирующие устройства (балуны) между антенной и фидером.

КСВ-метры, установленные на участке между антенной и фидером, не обеспечивают более точное измерение КСВ . КСВ в фидере не может регулироваться изменением длины линии. Если показания КСВ-метра при перемещении по линии существенно различаются, это может указывать на антенный эффект фидера, вызываемый током, текущим по внешней стороне оплетки коаксиального кабеля, и/или на плохую конструкцию КСВ-метра, но не на то, что КСВ изменяется вдоль линии.

Любая реактивность, добавленная к существующей резонансной нагрузке (имеющей только активное сопротивление) с целью снижения КСВ в линии, вызовет только увеличение отражения. Самый низкий КСВ в фидере наблюдается на резонансной частоте излучающего элемента и совершенно не зависит от длины фидера.

Эффективность излучения диполей различных типов (из тонкого провода, петлевого диполя, «толстого» диполя, трапового или коаксиального диполя) практически одинакова при условии, что каждый из них имеет незначительные омические потери и питается одинаковой мощностью. Однако «толстые» и петлевые диполи имеют более широкую рабочую полосу частот по сравнению с антенной из тонкого провода.

Если входное сопротивление антенны отличается от характеристического сопротивления фидерной линии, то сопротивление нагрузки передатчика может весьма значительно отличаться от характеристического сопротивления линии (если электрическая длина линии не кратна L/2), и от сопротивления в месте подключения к антенне. В этом случае импеданс нагрузки передатчика зависит еще и от длины фидера, который действует как трансформатор сопротивлений. В таких случаях, если не установлена подходящая цепь согласования между передатчиком и линией передачи, импеданс нагрузки может быть комплексным (т.е. иметь активную и реактивную составляющие), и с ним выходная схема передатчика может не справиться. В этом случае изменением длины линии передачи иногда удается обеспечить согласование нагрузки с передатчиком - именно это обстоятельство, скорее чем любые потери, связанные с КСВ, привело к возникновению многих неверных представлений о работе фидерных линий.

Любая питаемая в центре антенна любой разумной длины с любым типом фидера с низкими потерями будет обеспечивать достаточно эффективное излучение электромагнитной энергии . При этом, как правило, требуется хороший антенный тюнер, если передатчик рассчитан на работу с низкоомной нагрузкой (например, 50 Ом). Этим объясняется тот факт, что многие годы питаемый в центре диполь остается популярной многодиапазонной антенной.

Сегодня КСВ-метры есть практически на любой любительской радиостанции - встроенные в фирменную аппаратуру, самостоятельные фирменные приборы или самодельные. Результаты их
работы (КСВ антенно-фидерного тракта) широко обсуждаются радиолюбителями.

Как известно, коэффициент стоячей волны в фидере однозначно определяется входным импедансом антенны и волновым сопротивлением фидера. Эта характеристика антенно-фидерного тракта не зависит ни от уровня мощности, ни от выходного сопротивления передатчика. На практике его приходится измерять на некотором удалении от антенны - чаще всего непосредственно у трансивера. Известно, что фидер трансформирует входной импеданс антенны в некоторые его значения, которые определяются длиной фидера. Но при этом в любом сечении фидера они такие, что соответствующее им значение КСВ не изменяется. Другими словами, он в отличие от импеданса, приведённого к дальнему от антенны концу фидера, не зависит от длины фидера, поэтому измерять КСВ можно и непосредственно у антенны, и на некотором удалении от неё (например, у трансивера).

В радиолюбительских кругах ходит немало легенд о «полуволновых повторителях», якобы улучшающих КСВ. Фидер с электрической длиной в половину рабочей длины волны (или в их целое число) действительно является «повторителем» - импеданс на дальнем от антенны его конце будет равен входному импедансу антенны. Единственная польза от этого эффекта - возможность дистанционно измерить входной импеданс антенны. Как уже отмечалось, на значение КСВ (т.е. на энергетические соотношения в антенно- фидерном тракте) это не влияет.

На самом деле при удалённом от точки подключения фидера к антенне измерении КСВ регистрируемое его значение всегда несколько отличается от истинного. Эти отличия объясняются потерями в фидере. Они строго детерминированы и могут только «улучшить» регистрируемое значение КСВ. Однако это эффект часто на практике бывает незначительным, если используется кабель с малыми погонными потерями и длина самого фидера сравнительно небольшая.

Если входной импеданс антенны не является чисто активным и равным волновому сопротивлению фидера, в нём устанавливаются стоячие волны, которые распределены по фидеру и состоят из чередующихся минимумов и максимумов ВЧ напряжения.

На рис. 1 показано распределение напряжения в линии при чисто активной нагрузке, несколько большей волнового сопротивления фидера. При наличии в нагрузке реактивности распределение напряжения и тока смещается влево или вправо по оси ^ в зависимости от характера нагрузки. Период повторения минимумов и максимумов по длине линии определяется рабочей длиной волны (в коаксиальном фидере - с учётом коэффициента укорочения). Их характеристикой и является значение КСВ - отношение максимального и минимального напряжения в этой самой стоячей волне, т. е. КСВ = Umax/Umin.

Напрямую значения этих напряжений определяют только с помощью измерительных линий, которые в любительской практике не применяют (в диапазоне коротких волн - и в профессиональной тоже) Причина тому простая: чтобы иметь возможность измерить изменения этого напряжения по длине линии, её длина должна быть заметно больше, чем четверть волны. Иными словами, даже для самого высокочастотного диапазона 28 МГц она должна быть уже несколько метров и соответственно ещё больше для низкочастотных диапазонов.
По этой причине и были разработаны малогабаритные датчики прямой и обратной волн в фидере («направленные ответвители»), на основе которых и изготавливают современные измерители КСВ в диапазонах коротких волн и в низкочастотном участке УКВ диапазона (примерно до 500 МГц). Они измеряют высокочастотное напряжение и токи (прямой и обратный) в конкретной точке фидера, а на основании уже этих измерений и вычисляется соответствующий им КСВ. Математика позволяет вычислить его точно по этим данным - с этой точки зрения метод абсолютно честный. Проблема состоит в погрешности датчиков как таковых.

По физике работы таких датчиков они должны измерять ток и напряжение в одной и той же точке фидера. Существует несколько вариантов исполнения датчиков - схема одного из самых распространённых вариантов приведена на рис. 2.

Они должны быть выполнены так, чтобы при нагрузке измерительного узла эквивалентом антенны (резистивной безындукционной нагрузкой с сопротивлением, равным волновому сопротивлению фидера) напряжение на датчике, которое снимается с ёмкостного делителя на конденсаторах С1 и С2, и напряжение на датчике тока, которое снимается с половин вторичной обмотки трансформатора Т1, были равны по амплитуде и сдвинуты по фазе точно на 180° или 0° соответственно. Причём эти соотношения должны сохраняться во всей полосе частот, на которую рассчитан данный измеритель КСВ. Далее эти два ВЧ напряжения либо суммируются (регистрация прямой волны), либо вычитаются (регистрация обратной волны).
Первым источником погрешностей при этом методе регистрации КСВ является то, что датчики, особенно в самодельных конструкциях, не обеспечивают названные выше соотношения между двумя напряжениями во всей полосе частот. Как результат, происходит «разбаланс системы» - проникание ВЧ напряжения из канала, обрабатывающего информацию о прямой волне, в канал, делающий это для обратной волны, и наоборот. Степень развязки этих двух каналов принято характеризовать коэффициентом направленности прибора. Даже у вроде бы хороших приборов, предназначенных для радиолюбителей, и тем более у самодельных, он редко превышает 20…25 дБ.

Это означает, что нельзя доверять показаниям подобного «измерителя КСВ» при определении небольших значений КСВ. Причём в зависимости от характера нагрузки в точке измерения (а она зависит от длины фидера!) отклонения от истинного значения могут быть в ту или иную сторону. Так, при коэффициенте направленности прибора 20 дБ значению КСВ=2 могут соответствовать показания прибора от 1,5 до 2,5. Вот почему один из методов проверки подобных приборов - измерение КСВ, не равного 1 при длинах фидера, отличающихся на четверть рабочей длины волны. Если будут получены различные значения КСВ, это лишь говорит о том, что у конкретного КСВ-метра недостаточный коэффициент направленности…
Именно этот эффект и породил, по-видимому, легенду о влиянии длины фидера на КСВ.

Ещё один момент - это не совсем «точечный» характер измерений в таких приборах (точки съёма информации о напряжении и токе не совпадают).

Влияние этого эффекта менее значимо. Другой источник погрешностей - падение эффективности выпрямления диодов датчиков при малых ВЧ напряжениях. Эффект этот известен большинству радиолюбителей. Он приводит к «улучшению» КСВ при его малых значениях. По этой причине в КСВ-метрах практически никогда не используют кремниевые диоды, у которых зона неэффективного выпрямления гораздо больше, чем у германиевых или у диодов Шотки. Наличие этого эффекта в конкретном приборе легко проверяется изменением уровня мощности, при котором производятся измерения. Если КСВ начинает «возрастать» при увеличении мощности (речь идёт о его малых значениях), значит диод, ответственный за регистрацию обратной волны, явно занижает соответствующее ей значение напряжения.

При ВЧ напряжении на выпрямителе датчика меньше 1 В (эффективное значение) линейность вольтметра, в том числе и выполненного с использованием германиевых диодов, нарушается. Этот эффект можно минимизировать, производя градуировку шкалы КСВ-метра не расчётным путём (как это часто делают), а по реальным значениям КСВ нагрузки.

Ну и, наконец, нельзя не упомянуть ток, протекающий по внешней оплётке фидера. Если не приняты соответствующие меры, он может быть заметным и влиять на показания прибора. В его отсутствии обязательно надо убедиться при измерениях КСВ реальных антенн.

Все эти проблемы присутствуют и в приборах заводского изготовления, но особенно они обостряются в самодельных конструкциях. Так, в подобных устройствах не последнюю роль может играть даже недостаточная экранировка внутри блока датчиков прямой и обратной волн.

Что касается приборов заводского изготовления, то для иллюстрации их реальных характеристик можно привести данные из обзора, опубликованного в . В лаборатории ARRL были проверены пять измерителей мощности и КСВ разных фирм. Цена - от 100 до 170 долларов США. Четыре прибора использовали двухстрелочные индикаторы прямой и обратной (отражённой) мощности, позволявшие сразу считывать значение КСВ по объединённой шкале прибора. Практически все приборы имели заметную погрешность измерения мощности (до 10…15%) и заметную неравномерность её индикации по частоте (в полосе частот 2…28 МГц). То есть можно ожидать, что погрешность отсчёта КСВ будет выше приведённых значений. Более того, не все приборы, будучи подключёнными к эквиваленту антенны, показывали КСВ=1. Один из них (не самый дешёвый) даже показал 1,25 на частоте 28 МГц.
Иными словами, надо быть аккуратным при проверке самодельных КСВ-метров по приборам, которые выпускаются для радиолюбителей. И в свете сказанного совсем смешно звучат заявления некоторых радиолюбителей, которые нередко можно услышать в эфире или прочитать в радиолюбительских статьях в Интернете или в журналах, что у них КСВ, к примеру, 1,25… Да и целесообразность введения в подобные приборы цифрового отсчёта значений КСВ представляется не такой уж целесообразной.

Борис СТЕПАНОВ

Возвратные потери, коэффициент отражения и коэффициент стоячей волны служат для оценки согласованности/совпадения комплексных сопротивлений (электрических импедансов) источника, нагрузки и линии передачи. Рассмотрим физический смысл данных параметров и их взаимосвязь.

Определения

Возвратные потери (обратные потери, return loss) - это потери мощности в сигнале, возвращенном/отраженном от неоднородности в линии передачи или оптоволокне. Данная величина, как правило, выражается в децибелах (дБ):

  • RL дБ - возвратные потери в децибелах;
  • P пад - падающая мощность;
  • P отр - отраженная мощность.

Коэффициент отражения по напряжению, Γ - отношение комплексных амплитуд напряжений отраженной и падающей волн.

\[Γ = { U_{отр} \over U_{пад} }\]

Коэффициент отражения определяется комплексными сопротивлениями нагрузки Z нагр и источника Z ист:

\[Γ = { {Z_{нагр} - Z_{ист}} \over { Z_{нагр} + Z_{ист} } }\]

Обратите внимание, что отрицательный коэффициент отражения означает, что отраженная волна сдвигается по фазе на 180°.

Коэффициент стоячей волны (КСВ, КСВН, коэффициент стоячей волны по напряжению, SWR, VSWR) - отношение наибольшего значения амплитуды напряжения стоячей волны к наименьшему.

\[КСВ = { U_{ст.волн.max} \over U_{ст.волн.min} }\]

Поскольку неравномерность распределения амплитуды стоячей волны вдоль линии обусловлена интерференцией («сложением и вычитанием») падающей и отраженной волн, то наибольшее значение амплитуды U ст.волн.max волны вдоль линии (то есть значение амплитуды в пучности) составляет:

U пад + U отр

а наименьшее значение амплитуды (то есть значение амплитуды в узле) составляет

U пад - U отр

Следовательно

\[КСВ = { {U_{пад} + U_{отр}} \over {U_{пад} - U_{отр}} }\]

Взаимосвязь между КСВ, возвратными потерями и коэффициентом отражения

С помощью подстановки в формулы, приведенные ниже, и их простого преобразования можно получить следующее:

\[Γ = { {КСВ-1} \over {КСВ+1} }\]

\[КСВ = { {1+Γ} \over {1-Γ} }\]

\[Γ = 10^{{-RL} \over 20}\]

\[КСВ = { {1 + 10^{{-RL} \over 20}} \over {1 - 10^{{-RL} \over 20}} } \]

Таблица преобразования значений КСВ, возвратных потерь и коэффициента отражения
Коэффициент отражения |Γ| в % Возвратные потери, дБ Коэффициент стоячей волны
100,0000 0
89,1251 1 17,3910
79,4328 2 8,7242
70,7946 3 5,8480
63,0957 4 4,4194
56,2341 5 3,5698
50,1187 6 3,0095
44,6684 7 2,6146
39,8107 8 2,3229
35,4813 9 2,0999
31,6228 10 1,9250
28,1838 11 1,7849
25,1189 12 1,6709
22,3872 13 1,5769
19,9526 14 1,4985
17,7828 15 1,4326
15,8489 16 1,3767
14,1254 17 1,3290
12,5893 18 1,2880
11,2202 19 1,2528
10,0000 20 1,2222
8,9125 21 1,1957
7,9433 22 1,1726
7,0795 23 1,1524
6,3096 24 1,1347
5,6234 25 1,1192
5,0119 26 1,1055
4,4668 27 1,0935
3,9811 28 1,0829
3,5481 29 1,0736
3,1623 30 1,0653
2,8184 31 1,0580
2,5119 32 1,0515
2,2387 33 1,0458
1,9953 34 1,0407
1,7783 35 1,0362
1,5849 36 1,0322
1,4125 37 1,0287
1,2589 38 1,0255
1,1220 39 1,0227
1,0000 40 1,0202
0,8913 41 1,0180
0,7943 42 1,0160
0,7079 43 1,0143
0,6310 44 1,0127
0,5623 45 1,0113
0,5012 46 1,0101
Ремонт