Репитер назначение. Что такое репитер и как он работает. Сложное устройство для хорошей связи

10BASE5 вполне могут обойтись без них. Для сетей из нескольких таких сегментов необходимы простейшие репитеры . А при выборе в качестве среды передачи витой пары ( 10BASE -T) или оптоволоконного кабеля ( 10BASE-FL ) уже необходимы концентраторы (если, конечно, в сеть объединяются не два компьютера, а хотя бы три). В сети Fast Ethernet применение концентраторов обязательно.

Функции репитеров и концентраторов

Репитеры (повторители), как уже отмечалось, ретранслируют приходящие на них (на их порты) сигналы, восстанавливают их амплитуду и форму, что позволяет увеличивать длину сети. То же самое делают и простейшие репитерные концентраторы . Но помимо этой основной функции концентраторы Ethernet и Fast Ethernet обычно выполняют еще ряд функций по обнаружению и исправлению некоторых простейших ошибок сети. К этим ошибкам относятся следующие:

  • ложная несущая (FCE – False Carrier Event) ;
  • множественные коллизии (ECE – Excessive Collision Error) ;
  • затянувшаяся передача (Jabber) .

Все эти ошибки могут вызываться неисправностями оборудования абонентов, высоким уровнем шумов и помех в кабеле, плохими контактами в разъемах и т.д.

Под ложной несущей понимается ситуация, когда концентратор получает от одного из своих портов (от единичного абонента или из сегмента) данные, не содержащие ограничителя начала потока данных, то есть преамбула пакета началась, но в ней нет признака начала кадра.

Если после старта передачи кадр не начался в течение заданного временного интервала (5 мкс для Fast Ethernet, 50 мкс для Ethernet), то концентратор посылает сигнал "Пробка" всем остальным портам, чтобы они обнаружили коллизию. Длительность этого сигнала также составляет 5 или 50 мкс. Затем выявленный порт переводится в состояние "Связь неустойчива" (Link Unstable) и отключается. Обратное включение порта концентратором может произойти только при поступлении от него правильного пакета, без ложной несущей .

Ситуация множественных коллизий фиксируется при выявлении в данном порту более 60 коллизий подряд. Концентратор считает количество коллизий в каждом порту и сбрасывает счетчик, если получает пакет без коллизии. Порт, в котором возникают множественные коллизии , отключается. Если в течение заданного времени (5 мкс для Fast Ethernet, 50 мкс для Ethernet) в этом порту не будет зафиксировано коллизий, то он снова включается.

Ситуация затянувшейся передачи фиксируется в случае, когда время передачи превышает более чем в три раза максимально возможную длительность пакета, то есть 400 мкс для Fast Ethernet или 4000 мкс для Ethernet. При обнаружении такой затянувшейся передачи соответствующий порт отключается. После окончания затянувшейся передачи данный порт снова включается.

Кроме перечисленных функций концентратор также активно способствует обнаружению любых коллизий в сети. При одновременном поступлении на его порты двух и более пакетов он, как и любой абонент, усиливает столкновение путем передачи во все порты сигнала "Пробка" в течение 32 битовых интервалов. В результате все передающие абоненты всех сегментов обязательно обнаруживают факт коллизии и прекращают свою передачу.

Таким образом, даже самый простой концентратор представляет собой довольно сложное устройство, позволяющее автоматически устранять некоторые неисправности и временные сбои. Таким образом, концентратор не только объединяет точки включения кабелей сети, но и активно улучшает условия обмена, повышает производительность сети, отключая время от времени неисправные или неустойчиво работающие сегменты. Впрочем, главный признак концентратора остается – он не производит никакой обработки информации, воспринимает пакеты как единое целое, не анализируя их содержимое.

Как и сетевые адаптеры , концентраторы могут быть односкоростными и двухскоростными. Для большей свободы в проектировании сети лучше выбирать именно двухскоростные (10/100 Мбит/с) концентраторы .

Чаще всего репитеры и концентраторы выполняются в виде отдельных автономных блоков, имеющих внутренний или внешний источник питания.

Некоторые концентраторы рассчитаны на подключение жестко заданного количества сегментов определенного типа (например, на четыре сегмента 10BASE2 или же на восемь сегментов 10BASE -T). Для этого на них устанавливаются соответствующие типу сегмента разъемы: BNC , RJ-45 , AUI или оптоволоконные разъемы.

Другие, более дорогие концентраторы , называемые наращиваемыми, стековыми ( Stackable ), имеют модульную структуру и позволяют гибко приспосабливать их к заданной конфигурации сети. В этом случае в каркас (стек) концентратора может быть установлено различное число (обычно до 8) сменных модулей, каждый из которых ориентирован на один или несколько сегментов какого-нибудь типа и имеет соответствующие разъемы для подключения кабеля сети (например, BNC , AUI , RJ-45 , ST-разъемы). Как правило, количество подключаемых сегментов (портов концентратора ) выбирается кратным четырем: 4, 8, 12, 16, 24. Наращиваемый концентратор может поддерживать, к примеру, 192 порта (восемь модулей, каждый из которых рассчитан на 24 сегмента). Структура такого наращиваемого концентратора показана на рис. 13.3 .


Рис. 13.3.

Повторители – это устройства, усиливающие электрические сигналы и обеспечивающие сохранение формы и амплитуды сигнала при передаче его на большие расстояния. Описываются протоколами канального уровня модели OSI и могут объединять сети, отличающиеся протоколами лишь на физическом уровне (с одинаковыми протоколами на канальном и выше уровнях) и выполняют лишь регенерацию пакетов данных, обеспечивая тем самым электрическую независимость сопрягаемых сетей и защиту сигналов от воздействия помех. Использование повторителей позволяет расширить протяженность одной сети за счет объединения нескольких сегментов сети в единое целое. При установке повторителя создается физический разрыв линии связи, при этом сигнал воспринимается с одной стороны, регенерируется и направляется к другой части линии связи.

30. Мосты, типы мостов.

Мосты – это устройства, объединяющие между собой 2 похожие сети. Их задачей является передача пакетов данных из одной сети в другую и наоборот. Описываются протоколами сетевого уровня OSI. Регулируют трафик между сетями, использующими одинаковые протоколы передачи данных на сетевом и выше уровнях, выполняя фильтрацию информационных пакетов в соответствии с адресами получателей. Мост может соединить сети разных топологий, но работающих под управлением однотипных сетевых операционных систем. Сети, объединенные мостами становятся одной сетью и имеют один сетевой адрес.

Мосты бывают локальными и удаленными. Локальные соединяют сети, расположенные на ограниченной территории в пределах уже существующей системы. Удаленные соединяют сети, разнесенные территориально с использованием каналов связи и модемов.

Локальные мосты делятся на внутренние и внешние. Внутренние располагаются на одном ПК и совмещают функцию моста с функцией абонентской ЭВМ. Внешние предусматривают использование для функций моста отдельного ПК со специальным программным обеспечением.

Существует несколько типов мостов:

Прозрачные мосты;

Мосты с маршрутизацией от источника;

Транслирующие мосты;

Инкапсулирующие.

Прозрачный мост.

Прозрачные мосты самостоятельно строят специальную адресную таблицу, на основании которой можно решить, нужно передавать пришедший кадр в какой-либо другой сегмент или нет. Алгоритм прозрачного моста не зависит от технологии локальной сети, в которой устанавливается мост. Прозрачный мост строит свою адресную таблицу на основании пассивного наблюдения за трафиком, циркулирующим в подключенных к его портам сегментах. При этом мост учитывает адреса источников кадров данных, поступающих на порты моста. По адресу источника кадра мост делает вывод о принадлежности этого узла тому или иному сегменту сети. Рассмотрим процесс автоматического создания адресной таблицы моста и ее использования на примере простой сети, представленной на рисунке.

Принцип работы прозрачного моста

Мост соединяет два логических сегмента. Сегмент 1 составляют компьютеры, подключенные с помощью одного отрезка коаксиального кабеля к порту 1 моста, а сегмент 2 - компьютеры, подключенные с помощью другого отрезка коаксиального кабеля к порту 2 моста. Каждый порт моста работает как конечный узел своего сегмента за одним исключением - порт моста не имеет собственного МАС - адреса. Порт моста работает в так называемом неразборчивом режиме захвата пакетов, когда все поступающие на порт пакеты запоминаются в буферной памяти. Так как в буфер записываются все пакеты, то адрес порта мосту не нужен.

В исходном состоянии мост ничего не знает о том, компьютеры с какими МАС - адресами подключены к каждому из его портов. Поэтому в этом случае мост просто передает любой захваченный и буферизованный кадр на все свои порты за исключением того, от которого этот кадр получен. В нашем примере у моста только два порта, поэтому он передает кадры с порта 1 на порт 2, и наоборот. Одновременно с передачей кадра на все порты мост изучает адрес источника кадра и делает новую запись о его принадлежности в своей адресной таблице, которую также называют таблицей фильтрации или маршрутизации. Например, получив на свой порт 1 кадр от компьютера 1, мост делает первую запись в своей адресной таблице: МАС - адрес 1 - порт 1. После того как мост прошел этап обучения, он может работать более рационально. При получении кадра, направленного, например, от компьютера 1 компьютеру 3, он просматривает адресную таблицу на предмет совпадения ее адресов с адресом назначения 3. Поскольку такая запись есть, то мост выполняет второй этап анализа таблицы - проверяет, находятся ли компьютеры с адресами источника (в нашем случае - это адрес 1) и адресом назначения (адрес 3) в одном сегменте. Так как в нашем примере они находятся в разных сегментах, то мост выполняет операцию продвижения кадра - передает кадр на другой порт, предварительно получив доступ к другому сегменту. Если бы оказалось, что компьютеры принадлежат одному сегменту, то кадр просто был бы удален из буфера и работа с ним на этом бы закончилась. Такая операция называется фильтрацией . Если же адрес назначения неизвестен, то мост передает кадр на все свои порты, кроме порта - источника кадра, как и на начальной стадии процесса обучения. Процесс обучения моста никогда не заканчивается.

Мосты с маршрутизацией от источника.

Мосты с маршрутизацией от источника(SR-мосты) применяются для соединения колец Token Ring и FDDI, хотя для этих же целей могут использоваться и прозрачные мосты. Маршрутизация от источника основана на том, что станция-отправитель помещает в посылаемый в другое кольцо кадр всю адресную информацию о промежуточных мостах и кольцах, которые должен пройти кадр перед тем, как попасть в кольцо, к которому подключена станция-получатель. Настоящей маршрутизации в строгом понимании этого термина здесь нет, так как мосты и станции по-прежнему используют для передачи кадров данных только информацию МАС - уровня, а заголовки сетевого уровня для мостов данного типа по-прежнему остаются неразличимой частью поля данных кадра.

Сеть состоит из трех колец, соединенных тремя мостами. Для задания маршрута кольца и мосты имеют идентификаторы. SR-мосты не строят адресную таблицу, а при продвижении кадров пользуются информацией, имеющейся в соответствующих полях кадра данных.

При получении каждого пакета SR-мосту нужно только просмотреть поле маршрутной информации на предмет наличия в нем своего идентификатора. И если он там присутствует и сопровождается идентификатором кольца, которое подключено к данному мосту, то в этом случае мост копирует поступивший кадр в указанное кольцо. В противном случае кадр в другое кольцо не копируется. В любом случае исходная копия кадра возвращается по исходному кольцу станции-отправителю, с уведомлением что кадр был получен станцией назначения (в данном случае передан мостом в другое кольцо).

Достоинства: Более рациональные маршруты, проще и дешевле (не надо строить таблицы фильтрации), более высокая скорость (не надо просматривать таблицы фильтрации).

Недостатки: Более дорогие сетевые адаптеры которые принимающие участие в маршрутизации, сеть непрозрачна (кольца имеют номера), увеличивается трафик за счет широковещательных пакетов.

Наличие двух возможных алгоритмов работы мостов - от источника и в прозрачном режиме - создает трудности для построения сложных сетей Token Ring. Мосты, работающие от источника, не могут поддерживать сегменты, рассчитанные на работу в прозрачном режиме, и наоборот. До некоторого времени эта проблема решалась двумя способами. Один способ заключался в использовании во всех сегментах либо только маршрутизации от источника, либо только прозрачных мостов. Другим способом была установка маршрутизаторов. Сегодня имеется третье решение. Оно основано на стандарте, который позволяет объединить обе технологии работы моста в одном устройстве. Этот стандарт, называемый SRT, позволяет мосту работать в любом режиме. Мост просматривает специальные флаги в заголовке кадров Token Ring и автоматически определяет, какой из алгоритмов нужно применить.

Транслирующие мосты.

Это специальная форма прозрачного моста для объединения сетей с разными протоколами на канальном и физическом уровнях.

Этот мост объединяет сети путем манипуляции конвертами, приходящими из сети. Конверты сетей Ethernet, Token Ring, FDDI одинаковы. Но трудность в том, что в разные сети поступают пакеты разной длины. Поскольку транслирующий мост не может разбивать пакеты на части, каждое сетевое устройство должно быть сконфигурировано для передачи пакетов с одинаковой длиной.

Инкапсулирующие мосты.

Данные мосты объединяют сети с одинаковыми протоколами физического уровня Ethernet через сеть с отличными протоколами.

В отличии от транслирующих мостов инкапсулирующие вкладывают полученные пакеты внутрь другого конверта, который используется в магистральной сети. Затем передает его по этой магистрали другим мостам для доставки в место назначения.

Работа моста при передаче от сегмента А в сегмент Б.

Мост1 , используя протоколы канального и физического уровня, считывает из заголовков пакетов, передаваемых по сегменту А адрес назначения. Вкладывает все пакеты, адресованные другим сетям, в конверты сети FDDI, адресованные всем мостам магистрали и посылает этот конверт по магистрали.

Мост 2 получив конверт, раскрывает его и сравнивает адрес назначения со своей базой адресов. Если адрес не для этой сети, то пропускает конверт дальше.

Мост 3 получив конверт, раскрывает его и сравнивает адрес назначения со своей базой адресов. Т.к. адрес назначения находится в его сети, мост достает пакеты из конверта и отправляет их по назначению.

Мост 4 производит такие же действия, что и мост 2.

Мост 1 удаляет конверт из сети FDDI.

Что такое репитер и как этим пользоваться?

Многие производители и тем более продавцы указывают на продаваемых ими радиостанциях дальность их связи, но к сожалению многие покупатели не имеющие определенного опыта забывают, что данные цифры указываются для идеальных условий, а в реальном использовании данные цифры отличаются, и к сожалению не в лучшую сторону. Проще говоря, если вы купили радиостанцию и в инструкции к ней указано, что работает она на расстоянии 5 км., это совершенно не означает, что вы сможете связаться на расстоянии 5 км., хотя радиолюбительский диапазон 70 см. настолько своеобразен и интересен, что дальность радиосвязи может превзойти ваши ожидания и очень сильно;).
Что же делать? Как увеличить расстояние? Вот тут на помощь и приходит такая удивительная вещь как репитер или как многие его называют «репа»:)

Репитер, это приёмо-передающее радиотехническое устройство, усиливающее принимаемые сигналы и передающее их дальше. Репитер имеет антенну (или несколько антенн), радиоприёмник, радиопередатчик и источник электрического питания.




Работу интересующего нас репитера можно описать на примере работы двух корреспондентов, находящихся в разных концах города и не имеющих возможности связи напрямую (в прямом канале), т.е. принимать и передавать сигналы на одной частоте.

У обоих корреспондентов радиостанции настроены на одинаковую частоту, в нашем случае 433.100 мегагерц. Корреспондент «А» начинает передачу, радиостанция автоматически* меняет частоту приёма (433.100Мгц) на частоту передачи (438.600Мгц), разница между частотой приема и передачи в данном случае составляет 5,5 МГц, что и называют «разносом». В данном случае, разнос и составляет – плюс 5,5 Мегагерц. Посылаемый сигнал на частоте 438.600Мгц принимает репитер и практически одновременно передает данный сигнал на частоте 433.100Мгц, который в свою очередь, принимает корреспондент «В». Обратная передача корреспондента «В» составляет такую же последовательность.




Большинство репитеров закрыто на так называемый тон**, в нашем случае это тон 77 герц. Делается это для того, чтобы сторонние сигналы и помехи не принимались репитером и не мешали его работе. Данная технология основывается на присутствии в полезном сигнале звуковых тонов определенной частоты, лежащих вне частотного диапазона модуляции (вне области слышимости), т.е. репитер активизируется только при появлении заданного тона, на который он запрограммирован.

P.S. Когда включается защита от перегрева, в виде повторяющегося тонального сигнала, необходимо отпустить передачу и дать репитеру закрыться.

* для автоматического «разноса» приемной и передающей частоты воспользуйтесь инструкцией к своей радиостанции, в большинстве случаев, это называется «shift» или «RPT» и настраивается в плюс или минус необходимого сдвига частоты, в нашем случае 5,5Мгц, т.е. 433.100 + 5,5Мгц = 438.600 Мгц.

** для включения необходимого тона при передаче сигнала воспользуйтесь инструкцией к своей радиостанции, в большинстве случаев, это называется CTCSS (Continuous Tone-Coded Squelch System), в нашем случае CTCSS 77.0.

Удачной вам связи!

Wi-Fi репитер (или повторитель) — это устройство, задача которого заключается в ретрансляции сигнала от беспроводного роутера или точки доступа. Применяется для расширения покрытия беспроводной сети. Многие современные модели оборудования могут работать в разных режимах:

  • точка доступа (AP=Access Point);
  • репитер;
  • универсальный репитер;
  • клиент беспроводной сети;
  • мост с функцией точки доступа.

Режимы работы беспроводного оборудования

Если вы хотите воспользоваться функцией беспроводного репитера сегодня, вам нужно искать оборудование, которое в каталогах производителей именуется как:

  • Точка доступа (в англ. терминологии Wireless Access Point ) ;
  • Беспроводной повторитель или усилитель беспроводного сигнала (в англ. терминологии Range Extender ) ;

Внимание! Роутеры (т.е. маршрутизаторы) в наше время редко обладают функцией беспроводного репитера. Некоторые модели роутеров можно использовать в качестве повторителя, установив альтернативную прошивку DD-WRT. Однако, на альтернативных прошивках устройство может работать нестабильно.

Возьмём в качестве примера недорогую точку доступа TP-Link TL-WA701ND . Но инструкция также подойдет и для других моделей вроде TL-WA730RE, TL-WA801ND и похожих.

Устройство может работать в нескольких режимах:

Режим точки доступа

Преобразование существующей проводной сети в беспроводную.

Режим репитера

Расширение покрытия существующей Wi-Fi сети методом ретрансляции беспроводного сигнала.

Режим клиента беспроводной сети

Устройство выполняет функцию беспроводного адаптера для подключения проводных устройств к беспроводной сети.

Режим мост+точка доступа

Соединение двух локальных сетей с помощью беспроводного канала.

В чём отличие репитера от точки доступа

Беспроводная точка доступа подключается к сети с помощью кабеля и создаёт беспроводную сеть вокруг себя. А режим репитера подразумевает и подключение к сети, и её ретрансляцию исключительно по радиоканалу.

Настройка вай-фай репитера

Перед настройкой репитера, настройте главный роутер на какой-то конкретный канал вещания. Если на основном маршрутизаторе будет установлен автовыбор канала, репитер будет чаще терять с ним связь:

У разных производителей отличаются веб-интерфейсы оборудования, но суть настройки беспроводного повторителя одна и та же: в настройках устройства нужно указать MAC-адрес (BSSID) главной точки доступа и её параметры безопасности. Мы расскажем, как настроить ретрансляцию сети на примере всё той же бюджетной точки доступа TP-Link TL-WA701ND, которая умеет работать в режиме репитера.

Перед настройкой расположите повторитель сигнала в зоне уверенного приёма той беспроводной сети, покрытие которой вы собираетесь расширить. Позже, когда настройка ретрансляции будет выполнена, вы сможете экспериментировать, перемещая репитер и наблюдая за качеством ретрансляции.

Для связки повторителя с головным роутером или точкой доступа нужно выполнить следующие действия:

1 Подключите репитер с помощью кабеля Ethernet (патч-корда) в LAN -порт вашего существующего роутера или точки доступа:

По беспроводной сети подключиться к ненастроенному репитеру нельзя, т.к. он сам по себе беспроводную сеть не вещает и IP-адреса не выдаёт. Исключением может быть ситуация, если ваш репитер по умолчанию работает в режиме точки доступа и вы будете его настраивать с устройства, оснащённого Wi-Fi-модулем. Но мы рекомендуем всё же использовать патч-корд.

2 Подключитесь к сети вашего основного роутера с любого компьютера, как вы это делали ранее.

Зайдите в свойства сетевого адаптера на компьютере и вручную присвойте IP-адрес из того же диапазона адресов , на который настроен ваш новый беспроводной репитер (или точка доступа с функцией повторителя) (). Почитайте инструкцию к устройству и вы точно выясните, какой у него IP-адрес по умолчанию. Часто IP-адрес указывают также на нижней части устройства:

Если говорить об оборудовании TP-Link, то обычно их роутеры имеют по умолчанию IP-адрес 192.168.0.1, а точки доступа с функцией репитера — IP 192.168.0.254.

Допустим, по умолчанию новый повторитель имеет IP-адрес 192.168.0.254. Значит для его настройки можно временно присвоить сетевому адаптеру компьютера IP-адрес 192.168.0.20:

3 Зайдите на веб-интерфейс репитера ().

По умолчанию у оборудования TP-Link установлены учётные данные:

IP-адрес: 192.168.0.254;
Логин: admin;
Пароль admin .

4 Нажмите EXIT для выхода из мастера настройки.

5 Перейдите в раздел Network . Будет открыта единственная в этом разделе настройка LAN .

Как мы говорили выше, по умолчанию устройство использует IP-адрес 192.168.0.254. Если вы используете другой диапазон адресов в вашей сети, задайте новый IP-адрес из того же диапазона. Например, если ваш роутер, сигнал которого вы собрались ретранслировать, работает в подсети 192.168.1.1-192.168.1.254, измените адрес репитера на 192.168.1.254 или любой свободный из подсети 192.168.1.*.

При настройке репитера нужно убедиться в том, что:

  • IP-адрес повторителя сигнала принадлежит той же подсети, что и IP-адрес основного роутера;
  • нет конфликта адресов роутера, повторителя сигнала и других устройств в сети.

Если ваша сеть использует адреса диапазона 192.168.0.1-254 с маской 255.255.255.0, не вносите изменений в настройку LAN на репитере.
В этом случае, продолжите чтение данной инструкции с пункта 8 со слов «Выберите режим Repeater(Range Extender) «

В нашем примере мы используем подсеть 192.168.95.0.1-192.168.95.254. Поэтому, изменим IP-адрес с 192.168.0.254 на 192.168.95.254.

Если вы изменили IP-адрес точки доступа, нажмите Save

Затем нажмите OK в следующем окне для перезагрузки устройства:

Дождитесь окончания перезагрузки:

6 Т.к. теперь репитер попадёт в рабочий диапазон IP-адресов вашей существующей сети, верните автоматическое получение параметров в свойствах сетевой карты компьютера:

7 Зайдите на веб-интерфейс репитера по новому IP-адресу:

(если вы не меняли IP-адрес, то снова зайдите по адресу http://192.168.0.254)

8 Выберите режим Repeater(Range Extender) .

Нажмите кнопку Save :

После смены режима работы устройства снова необходимо выполнить его перезагрузку. Нажмите OK для перезагрузки устройства:

Подождите загрузки устройства:

9 Перейдите в раздел Wireless . При этом будет открыта настройка Wireless Settings .

У режима репитера есть два подвида: WDS Repeater и Universal Repeater . Проще всего воспользоваться режимом Универсального репитера . Он подойдёт в большинстве случаев. Используйте WDS-repeater только в том случае, если вы точно знаете, что корневая точка доступа поддерживает WDS.

После выбора режима работы необходимо указать реквизиты главной точки доступа, чей сигнал должен ретранслировать репитер. В поле Wireless Name of Root AP введите имя беспроводной сети (SSID) главной точки доступа, а в поле поле MAC Address of Root AP введите MAC-адрес главной точки доступа.

В веб-интерфейсе устройств TP-Link для этих целей присутствует кнопка Survey (Поиск) .

Она служит для поиска доступных беспроводных сетей. Нажав на неё, вы можете выбрать любую доступную беспроводную сеть и добавить её в репитер одним щелчком мыши по ссылке Connect . При этом, вам не понадобится вводить ни SSID, ни MAC-адрес точки доступа (BSSID). Эти реквизиты подставятся автоматически.

После нажатия на кнопку Survey подождите около 10-15 секунд, пока не появится окно со списком доступных беспроводных сетей, а затем нажмите Connect в строке с вашей сетью:

Нажмите Save для сохранения настроек:

10 Перейдите в настройку Wireless Security .

Выберите режим безопасности, который используется на корневой точке доступа (рекомендуется использовать WPA2-Personal).

Введите соответствующий ключ безопасности.

Нажмите Save :

Во всплывающем окне нажмите OK :

11 Перейдите в раздел DHCP . При этом откроется настройка DHCP Settings .

Установите переключатель DHCP Server в положение Disabled и нажмите кнопку Save :

Если оставить DHCP-сервер включённым, на устройствах, которые будут подключаться к репитеру, не будет работать Интернет.

12 Перейдите в раздел System Tools .

Нажмите кнопку Reboot :

В окне с вопросом Are you sure to reboot the Device нажмите кнопку OK :

Подождите, пока устройство перезагрузится:

13 Отсоедините патч-корд от LAN-порта устройства.

После перезагрузки в течение 1-2 минут, устройство должно подключиться к корневой точке доступа (или основному роутеру) и запустить ретрансляцию сигнала. При этом, на устройстве должен загореться первый индикатор справа:

Ваши устройства, такие как смартфон, планшет, ноутбук, будут видеть ту же сеть, что и ранее, только сигнал должен стать мощнее на несколько делений. Никаких переподключений на клиентских устройствах делать не нужно, т.к. репитер ретранслирует сеть с тем же именем и теми же параметрами безопасности.

Как проверить работу репитера

Вопрос : Зачем проверять? Ведь если устройства подключаются к сети, значит всё в порядке?

Ответ : это утверждение неверно. Устройства могут подключаться к более удалённой точке доступа или роутеру, а репитер при этом может не функционировать. Поэтому, к проверке нужно подойти более скрупулёзно.

Способ 1. Попытайтесь зайти на веб-интерфейс точки доступа после отключения патч-корда из её LAN-порта .

Перейдите на страницу Status . Если в области Wireless вы видите SSID ретранслируемой сети и уровень сигнала корневой точки доступа, а в в области Traffic Statistics — количество отправленных и полученных пакетов, то повторитель сигнала функционирует корректно:

Способ 2. Запустите приложение Wi-Fi Analyzer на Android-устройстве ().

Вы должны увидеть две точки доступа с одинаковым SSID, работающие на одном и том же канале:

Сотовая связь сегодня используется повсеместно. Сложно представить себе человека, у которого не было бы мобильного телефона. Но, несмотря на широкое распространение такой связи, качество ее далеко от идеала. И не только различные преграды мешают прохождению сигнала, есть и другие аспекты, например, проживание в населенном пункте с холмистым рельефом.

Операторы мобильной связи стараются решать эти вопросы. Но все равно в метрополитене, паркингах и даже нижних этажах крупных торговых центров приходится использовать репитер GSM.

Сложное устройство для хорошей связи

Репитер называют по-разному – повторитель или усилитель, но от этого его суть не меняется. Он предназначен для улучшения качества передаваемого и принимаемого мобильным телефоном сигнала и представляет собой прибор, который работает только в комплексе с двумя антеннами.

Они чаще всего используются для улучшения качества связи в населенных пунктах со слабым или плохим сигналом.В первом случае достигнуть хороших результатов позволяет внешняя антенна. Во втором – сервисная, находящаяся в зоне видимости абонентами.

Однако следует учитывать, что репитеры GSM сигнала обычно способны функционировать только на одном из имеющихся диапазонов связи.

Смотрим видео, сфера использования приборов:

Еще одним плюсом использования такого оборудования является возможность снижения уровня электромагнитного излучения от аппаратов. Это позволяет уменьшить негативное воздействие на здоровье и значительное увеличение периода бесперебойной работы без подзарядки. Использование репитеров в самолетах дает возможность снизить наводки.

Принцип работы усилителя

Для того чтобы понять, как функционирует прибор разберемся с его устройством. Обычно в комплект входят:

  • Антенны;
  • Провода;
  • Репитер.

Само устройство принимает радиоволны в месте своего расположения и перенаправляет их в другую зону, кроме этого оно является усилителем сотовой связи.

Принцип работы такого прибора заключается в установлении связи между антеннами с возможностью изменения при этом формы сигнала.

Получив усиление он возвращается на базу мобильного оператора. Однако для правильной работы GSM 3G репитера нужна хорошая электромагнитная развязка между двумя антеннами. Это позволит избежать эффекта самовозбуждения, приводящего к глушению сигналов всех расположенных рядом абонентов. Данный эффект достигается разнесением устройств на большое расстояние.

Смотрим видео, комплект и принцип работы:

Многие модели данных приборов имеют систему защиты от самовозбуждения, а более простые образцы сигнализируют о необходимости разноса антенн при помощи лампочек индикации.

Виды повторителей, их особенности

Разделение репитеров GSM сигнала на классы осуществляется по различным признакам. Исходя из характерных особенностей, сферы использования различают следующие виды:

  1. Абонентские;
  2. Полосовые;
  3. Оптические;
  4. Канальные.

При решении сложных задач допускается использование одновременно нескольких различных типов приборов. Это нужно учитывать решая какой GSM репитер выбрать.

Кроме того, существуют отличия и по:

  • Зоне покрытия
  • Мощности;
  • Коэффициенту усиления сигнала;
  • Стандарту сотовой связи.

Современные модели ретрансляторов способны обеспечивать зону покрытия от 50 до 300 м². То же самое касается и мощности. На рынке приборы представлены моделями, у которых данный показатель колеблется в пределах от 40 до 100 мВт. Естественно, что эффективность использования таких устройств также существенно отличается.

Коэффициент усиления показывает на сколько должна быть увеличена мощность на входе антенны при ее замене ненаправленной. Он является одним из наиболее важных параметров, которые учитывают при выборе конкретной модели и может быть от 40 до 90 дБ.

Стандарт сотовой связи и диапазон частот у репитеров GSM различных модификаций также существенно отличаются. Различают следующие устройства:

  • CDMA 450 (3G);
  • UMTS (3G);
  • GSM 1800 900 (2G).

Однако не только перечисленные характеристики вносят отличия в репитеры GSM сигнала. Различаются эти устройства и по другим параметрам:

  1. Ширине полосы пропускания;
  2. Условиям эксплуатации;
  3. Способу применения;
  4. Надежности и качеству.

Качество сотовой связи зависит от выбора репитера

Широкий ассортимент ретрансляторов на рынке позволяет каждому выбрать необходимую модель. Стоимость такого оборудования находится в диапазоне от 10 до нескольких 100 тысяч рублей. Однако решая, как выбрать репитер учтите, что дешевый прибор не может охватывать более 200 м² площади. Значит, применять его можно только в небольших помещениях. Дорогие модели способны покрывать гораздо большие площади и предназначены для использования в производственных помещениях.

Поскольку система усиления сотовой связи состоит из нескольких составляющих, то все они должны подбираться в соответствии с необходимой зоной охвата. Только при удачной их комбинации можно добиться высокого качества покрытия.

Лучшие модели

Использование этих устройств пока не находит широкого применения и это чаще всего обусловлено незнанием пользователей о достоинствах прибора. А ведь GSM репитер, установленный в квартире, позволит не только расширить зону покрытия, но и сэкономить заряд аппарата, добиться минимизации вредного излучения.

Смотрим видео о модели Picocell 900 SXB:

Среди моделей, пользующихся наибольшим спросом, стоит отметить следующие приборы. Модель Picocell 900 SXB для мобильного телефона относится к широкополосным усилителям сотовой связи, стандарта 900. Его применяют для улучшения качества звонков практически любых мобильных операторов. Единственным условием является достаточный уровень сигнала в месте предполагаемой установки внешней антенны.

Чаще всего такие приборы используются в небольших офисах или жилых помещениях. Они способны обеспечить площадь покрытия до 150 м². Установка ретранслятора допускается только в отапливаемом помещении. Он имеет небольшие габариты и вес, а также отличается низким потреблением энергии, способен обслуживать одновременно до 15 абонентов.

Репитер отличается простотой в установке и имеет возможность регулировки усиления. Его применение позволяет получать доступ к мобильному 2G интернету.

Другая модель – усилитель Telestone TS GSM 1800. Он предназначен для использования в зонах очень слабого и плохого сигнала и рассчитан на установку в помещениях большой площади.

Работа активной системы, созданной на базе этого прибора заключается в принятии сигнала от станции при помощи внешней антенны. Затем он усиливается и раздается пользователям.

Аналогичен принцип передачи сигнала в другую сторону – от телефона к станции.Репитер Telestone TS GSM 1800 обычно используется в помещениях с большими площадями: от частных домов до подземных паркингов и бункеров. Он оснащен индикаторами состояния, встроенной возможностью регулирования уровня сигнала и имеет защиту от самовозбуждения.

Как настроить репитер GSM своими руками

Приобретение устройства предполагает его дальнейшую эксплуатацию. Однако, чтобы использовать репитер, нужно не только выполнить монтажные работы, но и правильно настроить прибор. Первое в чем придется убедиться – это отсутствие повреждений на корпусе устройства и правильное его расположение вдали от отопительного оборудования.

Далее переходят к подключению кабелей. Как сделать это правильно указано на лицевой стороне прибора. Чтобы избежать возможности сжечь репитер, нужно до подключения проверить напряжение. Только после этого можно переходить к соединению радиоблока с адаптером питания. Если все операции были выполнены правильно, на панели загорится зеленый индикатор.

Настраивая оборудование, нельзя проводить какие-либо работы с разъемами при включенном ретрансляторе. Это может привести к поломке оборудования. значит, потребуется ремонт GSM репитера. Чтобы обеспечить максимальную зону покрытия, нужно изменить коэффициент усиления.

Специалисты рекомендуют выбирать значение в пределах 15 дБ. Выполняя настройку, обращайте внимание на свет индикатора, если он станет красным, значит, нужно уменьшить КУ. Для этого выполняется вращение против часовой стрелки. Если это не привело к смене света на зеленый, то придется сменить место, где расположены антенны: внутренняя и наружная.

После того, как все перечисленные процедуры выполнены, можете включать телефонный аппарат и проверять работу ретранслятора. При этом не забудьте проконтролировать зону обслуживания, если она мала, то придется установить дополнительные антенны. Вот и все, что потребуется выполнить для настройки и установки GSM репитера.

Ноутбуки