Интернет вещей: что это, зачем и как работает. Internet of Things (IoT) – что это такое? Концепция и что нас ждет в будущем Соревнования по IoT

«Интернет вещей» является частью концепции, что Интернет стал уже не просто глобальной сетью для людей, позволяющей общаться друг с другом посредством компьютеров, но также Интернет теперь является платформой для устройств, позволяющей им общаться в электронном виде с окружающим миром.
В результате это мир, который живет в виде информации и потоков данных от одного устройства к другому, является общим и может повторно использовать каналы для различных целей.
Использование потенциала «Интернета вещей» для экономического и социального блага в ближайшие десятилетия будет одной из основных задач, включая проблемы и возможности, вытекающие из этого явления.

Комбинирование технологий, в том числе дешевых датчиков, маломощных процессоров, постоянного масштабирования облачных сервисов, а также повсеместное внедрение беспроводного подключения позволили начать эту революцию.

Все чаще компании используют эти технологии для внедрения аналитики деятельности и поиска новых возможностей своих продуктов, что позволяет предметам быта становиться умнее, учиться на своем опыте и качественнее взаимодействовать с окружающей их средой.

Некоторые из этих устройств осуществляют коммуникации вида машина-машина. Например, датчики на проезжей части оповещают автомобили о потенциальных опасностях, смарт-сетки посылают динамические данные о ценах на электроэнергию бытовой технике с целью оптимизации энергопотребления.

Другие устройства используют коммуникацию вида машина-человек, что осуществляется непосредственно через сам продукт или косвенно через веб-браузер на ПК или мобильном устройстве. Например, системы управленческого саппорта (содействие принятию правильных управленческих решений) на фермах могут объединить данные о почвенных условиях из экологических датчиков с историческими данными и прогнозами о ценах и погодных условиях, что позволяет выработать рекомендаций для фермеров о том, как сажать и удобрять конкретные земельные участки.
Эти трансформации несмотря на свою значимость будут во многом незаметными для обывателя, потому что изменения в физической среде будут невидимым или очень неприметными. «Умный» дом или «умный» мост выглядят так же как и обычный – весь интеллект встроен в инфраструктуру. Потребительские товары, со встроенным интеллектом (например, сушилки для одежды или термостаты) внешне не будут значительно отличаться от тех, что есть сегодня.

Тем не менее, несмотря на отсутствие серьезных внешних изменений, влияние «Интернета вещей» будет весьма глубоким и создаст новые возможности для решения многих насущных социальных проблем сегодняшнего дня.

Возможности IoT представляются новыми продуктами и услугами, которые помогут защитить окружающую среду, сохранить энергию, повысить производительность сельского хозяйства, сделать перевозки быстрее и безопаснее, повысить уровень общественной безопасности, а также сделать медицинское обслуживание лучше и доступнее. Кроме того, некоторые предметы путем предоставления своевременной информации смогут просто помогать своим занятым владельцам в быту: например, «умный» холодильник может напомнить своему владельцу, что пора купить молоко, когда оно почти закончилось.
Большие изменения состоят из множества мелких и влекут за собой новые, также и «Интернет вещей» может принести миллионы дополнительных изменений в ближайшие годы. Эта статья демонстрирует разнообразие устройств, входящих в состав «Интернета вещей» уже сегодня. В потенциале эти устройства могут быть применимы для решения различных практических задач, больших и маленьких, а также в открытых новыми технологиями стратегических принципах, которые помогут правительственным лидерам максимизировать выгоду.

Окружающая среда

С постоянно растущей численностью людей на планете (сейчас уже более 7 миллиардов) рациональное использование природных ресурсов Земли становится все более сложной задачей, но это тот вопрос, который должен быть решен для достижения устойчивого экономического развития в первую очередь.

Защита окружающей среды требует многогранного решения, но «Интернет вещей» уже сейчас предлагает уникальные возможности для решения таких вопросов, загрязнение воды и воздуха, свалки отходов и вырубка лесов.

Сенсорные устройства, соединенные в общую сеть, теперь внимательно следят за воздействием на окружающую среду наших городов, собирая сведения о канализации, качестве воздуха и мусорных отходах. За пределами города такие же сети сенсорных устройств ведут постоянный мониторинг наших лесов, рек, озер и океанов.

Многие экологические тенденции настолько сложны, что их трудно осмыслить, но сбор данных является первым шагом на пути к пониманию и в конечном итоге к выработке решений по снижению отрицательного воздействия деятельности человека на окружающую среду.

Атмосфера

Air Quality Egg («яйцо проверки качества воздуха») представляет собой устройство, которое использует датчики для сбора и обмена данными о качестве воздуха за пределами дома или офиса человека. В то время как государственные учреждения, такие как Агентство по охране окружающей среды США, мониторят качество воздуха и уровень загрязненности в центрах мегаполисов, «яйцо» собирает данные о непосредственного окружения своего пользователя в режиме реального времени. Базовая станция передает данные о качестве воздуха через Интернет, где на специальном веб-сайте собирается и отражается информация, собранная всеми «яйцами», которые используются. В режиме реального времени данные могут быть использованы для оценки влияния городской политики и изменения уровня загрязнения, а также для разработки и принятия новых программ и решений в этой сфере. Также данный сервис позволяет жителям города больше узнать о своем месте жительства и своем личном и непосредственном влиянии на свой дом. Устройство «Air Quality Egg» можно найти по всей Северной Америке, в Западной Европе и Восточной Азии и в будущем может сыграть свою роль в развивающихся странах с наиболее быстрым ростом городского населения и высокими темпами загрязнения.

Мусорные контейнеры (урны)

Устройство BigBelly является работающей на солнечных батареях урной, которая уплотняет мусор и предупреждает санитарные экипажи (дворников и уборщиков), когда она полна. Общая сеть анализирует собранные данные, полученные от каждой урны BigBelly, что позволяет планировать деятельность по сбору и оперативно вносить коррективы, такие как частота вывоза мусора и размер самой урны. Системы BigBelly располагаются повсюду: в городах, крупных деловых центрах, в университетских городках, в парках и на пляжах.
Бостонский университет сократил частоту вывоза мусора с 14 до 1,6 раза в неделю. В университете не только сэкономили время, но и энергию, так как теперь используется меньшее количество мешков для мусора и производится меньше углекислого газа во время вывозов мусора.

Учитывая, что объемы бытовых отходов согласно прогнозам возрастут с 1,3 тонны, производимых сейчас, до 2,2 млрд. тонн к 2025 году, то дополнительные инструменты будут крайне необходимы, чтобы справляться с большими объемами мусора.

Леса

Invisible Tracck (невидимый Трак) представляет собой небольшое устройство, которое незаметно размещается на деревьях в охраняемых лесных районах, чтобы помочь в борьбе с незаконной вырубкой лесов. Устройства, которые меньше, чем колода карт, уведомляют власти, когда незаконно заготовленные деревья проходят в зоне действия мобильной связи. Сотрудники правоохранительных органов затем могут найти производственные площадки и остановить эту деятельность в более полном масштабе, нежели просто оштрафовав за незаконную вырубку.

Сети невидимых Траков в настоящее время развернуты в амазонских лесах в Бразилии, которые теряли в среднем по 3 460 000 гектаров девственных лесов каждый год в период с 2000 по 2005 года. Многие незаконные действия по вырубке лесов прошли незамеченными, так как частоты спутникового диапазона и радиочастоты часто слишком слабые в отдаленных районах. Невидимый Трак теперь гарантирует, что даже в наиболее уязвимых и отдаленных районах Бразилии можно охранять и защищать леса.

Водные пути

Интегрированная система морских наблюдений в Австралии представляет собой сеть датчиков вдоль Большого Барьерного рифа, позволяющую собирать данные для исследователей, изучающих влияние океанических условий на морские экосистемы и изменения климата. Буйки, оснащенные датчиками, собирают биологические, физические и химические данные. Данные передаются на базовую станцию на берегу за счет использования различных беспроводных технологий, в том числе микроволн, телевидения и мобильных сетей 3G, в зависимости от расстояния до берега. Система была развернута в 2010 года в семи различных местах вдоль Большого Барьерного рифа и собрала данные для исследования движения рыб, биоразнообразия и повреждений коралловых рифов.

«Интернет вещей», Internet of things (IoT) - это модное сегодня словосочетание является одним из наиболее цитируемых терминов в ИТ-публикациях. Аналитики говорят о быстрорастущем рынке IoT, о влиянии на него социальных, облачных и, конечно, мобильных технологий, при этом не совсем очевидно, что к этому IoT-рынку относится. С толкованием самого термина тоже не всё однозначно. От вендора к вендору, от автора к автору определения различаются весьма существенно. Причем в зависимости от толкования само явление представляется либо грядущей перспективой, либо свершившимся фактом. Автор данной статьи предпринял попытку сделать сравнительный анализ публикаций на данную тему, разобраться, что же относится к понятию «рынок IoT» и почему в последнее время ему уделяется повышенное внимание.

IoT-концепция и технология

Прежде чем говорить о рынке, необходимо выяснить, что такое IoT, и понять, существует ли определение данного термина. Впрочем, проблема не в отсутствии определений, а напротив, в их избытке. Просмотрев несколько десятков статей и отчетов на тему Internet of things, автор убедился в наличии серьезных расхождений в трактовке этого термина. Действительно, приведем определения из наиболее уважаемых источников. Аналитическая компания Gartner трактует понятие «Интернет вещей» (Internet of Things) как сеть физических объектов, содержащих встроенную технологию, которая позволяет этим объектам измерять параметры собственного состояния или состояния окружающей среды, использовать и передавать эту информацию. Заметим, что в этом определении, кстати, наиболее часто цитируемом, слово «Интернет» вообще отсутствует. То есть, говоря о сети «Интернет вещей», не утверждается, что она является частью Интернета. Более того, согласно выражению одного из специалистов по технологии IoT Мэта Трака (Matt Turck), управляющего директора компании FirstMark Capital, «по иронии, несмотря на название “Интернет вещей”, сами вещи часто связаны с помощью M2M-протоколов, а не самого Интернета». Впрочем, наличие или отсутствие подключения к Интернету - не единственное расхождение в определениях. Согласно толкованию специалистов из компании Cisco Business Solutions Group (CBSG), IoT - это состояние Интернета начиная с момента времени, когда количество «вещей или объектов», подключенных к Всемирной сети, превышает население планеты. CBSG подкрепляет свои выводы расчетами. По данным компании, взрывной рост смартфонов и планшетных компьютеров довел число устройств, подключенных к Интернету, до 12,5 млрд в 2010 году, в то время как число людей, живущих на Земле, увеличилось до 6,8 млрд; таким образом, количество подключенных устройств составило 1,84 единиц на человека. Исходя из этой несложной арифметики, Cisco Business Solutions Group фактически определило саму точку наступления эры «Интернета вещей» (рис. 1). Где-то между 2003-м и 2010-м годом количество подключенных устройств превысило население планеты, что и ознаменовало переход в состояние «Интернет вещей». При этом авторы исследования считают, что количество подключенных устройств на одного человека из числа интернет-пользователей в 2010 году составило 6,25 штук.

Рис. 1. Рост числа подключенных устройств на одного человека
(источник: Cisco Business Solutions Group)

Если Cisco упоминает в связи с термином IoT о взрывном росте смартфонов, подключенных к Сети, то IDC, например, четко говорит, что устройства в концепции IoT должны быть автономно подключены к Интернету и передавать сигналы без участия человека. А потому смартфон, управляемый пользователями, к IoT-устройствам отнесен быть не может.

Согласно IDC, «Интернет вещей» (IoT) - это проводная или беспроводная сеть, соединяющая устройства, которые имеют автономное обеспечение, управляются интеллектуальными системами, снабженными высокоуровневой операционной системой, автономно подключены к Интернету, могут исполнять собственные или облачные приложения и анализировать собираемые данные. Кроме того, они обладают способностью захватывать, анализировать и передавать (принимать данные) от других систем.

Очевидно, что если аналитики оперируют понятием «объем рынка IoT», то опираться на столь расплывчатое определение, как «некое новое состояние Интернета», невозможно. При этом об IoT, как о неком переходе Интернета в новое качество, говорят не только специалисты из CBSG. Обратим внимание на рис. 2, взятый из отчета Internet of Things (IoT) & Machine-To-Machine Communication Market By Technologies & Platforms (marketsandmarkets.com). Он также харакетризует IoT как этап в развитии Интернета, «когда не только люди, но и вещи начинают взаимодействовать между собой, инициировать транзакции, оказывать влияние друг на друга».

Рис. 2. Этапы развития Web 1.0, Web 2.0, Web 3.0
(источник: Internet of Things (IoT) & Machine-To-Machine (M2M) Communication Market
By Technologies & Platforms (marketsandmarkets.com))

В этом плане показательна еще одна схема: иллюстрация из статьи корейского автора Sunsig Kim, опубликованная в 2012 году на сайте i-bada.blogspot.ru/. Здесь состояние IoT представляется как точка перехода - это следующая ступень, по сравнению с технологией M2M (рис. 3). Напротив, в публикациях ряда авторов, включая IDC, можно прочитать, что M2M - это технология, которая, будучи предшественницей технологии IoT, в настоящее время является ее составной частью.

Рис. 3. Переход от технологий M2M к технологиям IoT (источник: Sunsig Kim 8th August 2012 i-bada.blogspot.ru/)

Если описанные нами определения говорят об имеющем место явлении, то, например, в формулировке Кайвана Карими (Kaivan Karimi), исполнительного директора по глобальной стратегии и развитию бизнеса Freescale Semiconductor, IoT - это скорее перспектива: миллиарды умных подключенных «вещей», формирующих своего рода универсальную глобальную нейронную сеть, которая будет включать все аспекты нашей жизни. IoT состоит из умных машин, взаимодействующих и общающихся с другими машинами, объектами, окружающей средой и инфраструктурой. В такой системе будут генерироваться огромные объемы данных, обработка которых может использоваться для управления и контроля за вещами, чтобы сделать нашу жизнь удобнее и безопаснее, а также снизить наше воздействие на окружающую среду.

Почему же так много определений, и все они разные?

Во­первых, технологии развиваются так быстро, что постоянно появляется новое наполнение термина, которое не всегда стыкуется с предыдущими толкованиями. Это красноречиво иллюстрирует рис. 4, где эволюция IoT отождествляется с несколькими стадиями и, по сути, с разными технологиями.

Рис. 4. Эволюция технологии «Интернет вещей»

Во­вторых, очень часто новую технологию определяют как совокупность факторов, отличающую ее от предшествующей, а потом эту предшествующую технологию включают в новое понятие. Движимые маркетинговыми устремлениями вендоры хотят старые технологии называть новыми именами. Аналитики тоже, следуя моде и стремясь продемонстрировать значимость описываемого рынка, используют один так называемый зонтичный термин, совмещая в нем несколько понятий.

Аналогичная ситуация наблюдается и в отношении других новых терминов. Возьмем, к примеру, термин SaaS, возникший для обозначения следующей ступени развития технологии ASP. Сегодня в ряде публикаций ASP-проекты стали включать в рынок SaaS, что, строго говоря, некорректно.

Примерно то же происходит и с термином IoT: с одной стороны, это следующая ступень развития M2M-технологий, с другой стороны, во многих источниках говорится, что рынок M2M-решений является подмножеством IoT, а в некоторых источниках используют аббревиатуру IoT/M2M.

Еще одна причина неоднозначности термина заключается в том, что на базе IoT решаются разные классы задач. В частности, Кайван Карими говорит о наличии, как минимум, двух классов задач, которые объединяет термин IoT. Первая задача - это удаленный мониторинг и управление набором взаимосвязанных сетевых устройств, каждое из которых может взаимодействовать с объектами инфраструктуры и физической среды. Например, датчик температуры и влажности контролирует сеть приборов, которые управляют системой климата умного здания (окон, жалюзи, кондиционеров и пр.). Более экзотический пример - датчик на руке владельца умного дома подает сигнал о психофизическом состоянии хозяина всем умным устройствам, находящимся в сети; каждое из них реагирует определенным образом, в результате чего меняется освещенность, фоновая музыка, кондиционирование. Здесь основная функция не аналитическая, а именно управляющая. Вторая задача - это использование данных, получаемых с конечных узлов (смарт­устройств с возможностью подключения и зондирования) для интеллектуального анализа с целью выявления тенденций и взаимосвязей, которые могут генерировать полезную информацию для обеспечения дополнительной выгоды в бизнесе. Например, отслеживание поведения посетителей в магазине с помощью бирок на товарах: сколько времени и возле каких товаров останавливаются посетители, какие товары берут в руки и т.п. На основании данной информации можно изменить расположение товаров в зале и увеличить объем продаж. Еще один пример - из сферы автострахования. Размещение в автомобилях устройств, снабженных акселерометром, позволит страховой компании собирать данные о степени аккуратности вождения клиента. Фиксироваться могут не только столкновения, но и, например, резкий наезд на предмет или бордюр. Чем аккуратнее водит клиент, тем дешевле страховка, а лихач платит больше. В последних примерах не стоит задача управления - здесь выполняется сбор данных и их обработка методами современной аналитики. Статистическая информация обо всех клиентах позволит компании правильно прогнозировать свои риски.

В работе «What the Internet of Things (IoT) Needs to Become a Reality» (“Что требуется IoT, чтобы стать реальностью») Кайван Карими пытается представить обобщенную схему IoT-решения (рис. 5). Согласно данной схеме, это стек, в который входит шесть слоев: устройства зондирования и/или смарт­устройства, узлы подключения, слой встроенных узлов обработки, слой удаленной облачной обработки данных; шестой слой может выполнять две функции. Первая, обозначенная как «приложение/действие» означает, что решение используется для того, чтобы осуществлять удаленное управление устройством либо автоматически управлять процессом на основе зондирующих устройств. Второй вариант - «аналитика/большие данные» подразумевает, что задача нацелена на использование данных, получаемых с зондирующих устройств для анализа и выявления тенденций и взаимосвязей, которые могут генерировать полезную бизнес-информацию.

Рис. 5. Типовая архитектура IoT-решения (источник: Freescale Semiconductor)

Сходную типовую архитектуру IoT-решения дает компания Microsoft (рис. 6).

Рис. 6. Типовая архитектура IoT-приложений (источник: Microsoft)

В своих работах Кайван Карими представляет не только изображение типовой архитектуры, но также графическую интерпретацию всей экосистемы IoT (рис. 7).

Рис. 7. Экосистема «Интернета вещей»

Рис. 8. IoT как «Сеть сетей» (источник: CBSG)

Рынок IoT и его участники

Что же такое IoT-рынок? Как его подсчитать? Кого причислить к его участникам? Если подсчитать все проекты, которые подпадают под схему, представленную на рис. 5, то рынок окажется весьма небольшим. Если же подсчитать оборот компаний, занятых созданием элементов, которые потенциально могут быть реализованы в данной схеме, то получится совсем другая цифра. Исходя из публикаций видно, что аналитики выбирают второй подход: они представляют рынок как совокупность бизнеса всех игроков, которые создают подключаемые смарт­устройства и сенсоры, готовят платформы для построения IoT-решений, разрабатывают технологии соединения «Интернета вещей» в сеть и предоставляют вспомогательные сервисы. То есть аналитики рассматривают не столько рынок IoT-решений (в узком понимании), сколько бизнес всех участников экосистемы провайдеров сервисов и технологий вокруг построения IoT-решений.

Похоже, именно по этому пути идут компании, которые оперируют термином «рынок IoT». В частности, компания IDC выделяет целых пять сегментов IoT-рынка и соответствующих игроков.

К первому («Устройства /Интеллектуальные системы») относятся производители смарт­устройств и сенсоров, обладающих возможностью подключения к проводным/беспроводным сетям, способным захватывать и передавать данные, исполнять собственные или облачные приложения, взаимодействовать с интеллектуальной системой в автоматическом режиме.

Второй сегмент носит название «Средства обеспечения подключения и поддержки IoT-сервиса». Это потенциальный бизнес для телеком­провайдеров, которые могут предоставлять сервис обеспечения связи на базе разных технологий, включая проводную, сотовую связь (2G, 3G, 4G), Wi-Fi и дополнительные сервисы, например управление билингом.

В третьем сегменте под названием «Платформы» IDC выделяет платформы обеспечения работы устройств, сетей и приложений.

Платформы обеспечения работы устройств представляют ПО, ответственное за обеспечение потока данных на конечные устройства и с них, включая функции активации, управления и диагностики.

Платформы обеспечения сетевого взаимодействия предоставляют клиентам программное обеспечение для подключения IoT/M2M-устройств с целью осуществления сбора и анализа информации. Платформа дает возможность управлять подпиской, контролировать тарифные планы и управлять ими. Этот слой предоставляет клиентам соглашение об уровне обслуживания, нацелен на улучшение качества и обеспечение безопасности решений.

Платформы обеспечения работы приложений представляют собой горизонтально ориентированные решения по интеграции корпоративных приложений и конкретных IoT-приложений.

Четвертый сегмент, «Аналитика» - представляет решения, которые позволяют увеличить эффективность бизнеса на основе принятия более эффективных решений на базе собранных с помощью IoT-технологии данных, в том числе с применением технологии Big Datа. К данному сектору также относятся появляющиеся аналитические решения, которые позволят обеспечивать интеграцию данных, полученных на базе мониторинга IoT и социальных сетей.

И наконец, пятый сегмент - приложения для поддержки вертикальных решений, которые реализуют специфические для различных индустрий функции.

Автор карты «Экосистема “Интернета вещей”» Мэт Трак (Matt Turck), управляющий директор FirstMark Capital, представляет не только сегментацию рынка, но и приводит конкретные имена наиболее значимых игроков в каждом из сегментов (рис. 9). Эта работа переводит разговор об участниках рынка IoT в более практическую плоскость.

Рис. 9. «Экосистема “Интернета вещей”» (источник: Matt Turck, Sutian Dong & First Mark Capital)

Мэт Трак также дает ответ на вопрос, почему рынок IoT привлекает внимание именно в последние годы. Он отмечает, что рост интереса к рынку и само его развитие происходит благодаря слиянию нескольких ключевых факторов. Во­первых, стало проще и дешевле производить смарт­устройства, появляются компании-дистрибьюторы и компании, заинтересованные в финансировании подобного рода проектов. Во­вторых, на протяжении последних нескольких лет резко продвинулись в своем развитии технологии беспроводной связи. Сегодня каждый пользователь имеет мобильный телефон или планшет, который может использоваться как универсальный пульт дистанционного управления для интернет-вещей. Повсеместное подключение становится реальностью (Wi-Fi, Bluetooth, 4G). В-третьих, «Интернет вещей» в состоянии применять всю инфраструктуру, которая возникла в смежных областях. Облачные вычисления позволяют создавать упрощенные и дешевые конечные устройства, поскольку интеллектуальную составляющую можно перенести с конечных устройств в облако. Инструменты Big Data, в том числе программы с открытым исходным кодом, такие как Hadoop, позволяют анализировать огромные массивы данных, захватываемые IoT-устройствами.

В экосистеме (см. рис. 9) автор выделяет практически те же элементы рынка, что и компания IDC, при этом они по-другому разбиты на сегменты. Мэт Трак выделяет три крупные части: горизонтальные платформы, вертикальные приложения и «строительные блоки». Автор экосистемы подчеркивает, что, несмотря на активный бизнес в области создания вертикальных решений, амбициозные игроки рынка нацелены на то, чтобы стать горизонтальной платформой, на базе которой будут строиться все вертикальные решения из области Internet of Things. Так, несколько игроков из сектора домашней автоматизации (SmartThings, Ninja Blocks и т.д.) выступают разработчиками горизонтальных программных платформ. Крупные корпорации, например GE и IBM, активно ведут разработку своих платформ. Телеком-компании, такие как AT&T и Verizon, также имеют хорошие перспективы и принимают участие в этой гонке. Открытым остается вопрос, насколько легко горизонтальная платформа, построенная под один класс вертикальных решений, может быть приспособлена под вертикальные решения другого класса. Пока неочевидно также, какие платформы - закрытые или открытые, имеют перспективы занять лидирующие позиции в этой области.

Вертикальных решений на рис. 9 отмечено достаточно много, они сгруппированы в более мелкие блоки. В рамках обзорной статьи прокомментировать все из них не представляется возможным, поэтому остановимся лишь на некоторых.

Например, в разделе «носимые компьютеры» отмечено новомодное устройство Google Glass, о котором впервые было объявлено в феврале 2012 года. Устройство на базе Android (рис. 10) снабжено прозрачным дисплеем, расположенным над правым глазом, способно записывать видео высокого качества, выполнять функции дополненной реальности, мобильной связи, доступа в Интернет и вести видеодневник.

Рис. 10. Google Glass

В последнее время приобретают популярность носимые устройства для фитнеса, такие как Fitbit, Nike + Fuelband, Jawbone, с помощью которых пользователи могут мониторить степень своей физической активности и подсчитывать потраченные калории (на рис. 9 они вынесены в отдельную категорию).

Типичный представитель данной группы - устройство UP Jawbone (рис. 11), представляет собой спортивный браслет, который может работать с iPhone и Android-платформой. Устройство позволяет отслеживать сон, рацион питания, количество пройденных шагов и сожженные калории. Браслет имеет вибрационный двигатель, который может либо служить будильником, либо напоминать, что пользователь слишком долго находится в сидячем положении. Браслет способен отслеживать фазы сна и будить владельца именно в фазе легкого сна, когда просыпаться гораздо легче.

Рис. 11. UP Jawbone позволяет вести
мониторинг физической нагрузки

Устройство включает социальное приложение, которое помогает добавить дополнительный уровень мотивации к занятиям спортом. Пользователи могут просматривать данные своих друзей, делиться спортивными результатами, соревноваться.

Подобные носимые устройства могут применяться в медицинских целях, например осуществлять удаленный мониторинг за состоянием пациента (кровяное давление, частота сердечных сокращений и т.п.), чтобы уведомить близких или медицинский персонал в случае повышения показателей. IoT-технологии вообще находят широкое применение в медицине - от простейших систем напоминания приема медикаментов до внедряемых в организм зондов с целью мониторинга работы органов для постановки сложного диагноза.

Наиболее активно IoT используется в технологиях умного дома: удаленное управление через Интернет домашними устройствами, удаленный мониторинг и управление системами отопления, освещения, медиаустройствами, электронными системами безопасности, оповещения о вторжениях, противопожарными системами и пр.

Из игроков, отмеченных в разделе домашней автоматизации на рис. 9, интересно отметить компанию Nest Labs, которая разрабатывает и производит программируемые термостаты и датчики дыма с поддержкой Wi-Fi и функциями самообучения. Стартап, образованный в 2010 году двумя выходцами из Apple, уже через пару лет вырос в компанию с числом сотрудников более 130 человек.

Свой первый продукт - термостат (рис. 12) - компания представила в 2011 году. В октябре 2013-го Nest Labs объявила о выпуске устройства контроля дыма и угарного газа. Термостат Nest обеспечивает взаимодействие с устройством не только через тач­скрин­интерфейс, но и дистанционно, поскольку термостат подключен к Интернету. Компания может распространять обновления для исправления ошибок, повышения производительности, а также добавлять дополнительные функции. Для обновления термостат должен быть подключен к Wi-Fi и аккумулятору, поддерживающему напряжение 3,7 В для обеспечения загрузки и установки обновлений.

Рис. 12. Термостат Nest Labs

Широкое применение технология IoT находит в энергетике (смарт­счетчики, системы выявления потерь или краж в электрической сети). В нефтегазовом секторе, например, используется удаленный мониторинг трубопроводов.

Множество решений разрабатывается для более безопасной эксплуатации автомобиля. Технология Connected cars (Подключенные автомобили) позволяет использовать системы экстренного вызова скорой помощи со встроенной SIM-карты. В автостраховании начинает практиковаться расчет страховки, базирующийся на удаленном мониторинге вождения пользователей. В транспорте широко используются системы отслеживания маршрута автомобиля, мониторинг грузоперевозок, контроль отгрузки и складирования. Практикуется автоматизированная система контроля воздушного движения. Муниципальные органы власти могут использовать IoT-решения для запуска, эксплуатации и контроля системы общественного транспорта с целью оптимизации расхода топлива, контроля и управления движением поездов. В ритейле развивается автоматизация логистических задач, удаленный мониторинг и учет товаров, снабженных RFID-метками, инвентаризация в реальном времени, беспроводные платежные решения. В системах общественной безопасности - мониторинг и контроль состояния промышленных объектов, мостов, туннелей и т.п. В промышленном производстве - контроль процесса производства, удаленная диагностика, управление роботизированными комплексами. В сельском хозяйстве - удаленное управление системами ирригации, мониторинг состояния и поведения животных, мониторинг уровня воды водоемах и т.д.

Итак, что же такое «Интернет вещей» - реальность или перспектива? С учетом проведенного анализа можно утверждать, что это перспектива, которая постепенно становится реальностью.

Вспомните фантастические фильмы, где умный дом угадывает желания хозяев, заказывает продукты, следит за бытовой техникой. Это может стать реальностью быстрее, чем вам кажется. Взять хотя бы нашу новую систему умного микроклимата – это один из шагов в сторону технологичного будущего. А в основе всех «умных» технологий лежит понятие «интернет вещей». Что это такое, как появилось и к чему приведет – об этом ниже.

Что такое интернет вещей

На английском «интернет вещей» звучит как the Internet of Things, или просто IoT. Запомните эту аббревиатуру, она будет все чаще появляться в СМИ и на просторах мировой сети.

Говоря простыми словами, интернет вещей – это сеть, объединяющая все объекты вокруг вас. К сети из компьютеров, планшетов, смартфонов и даже телевизоров уже все привыкли. А что если в эту сеть включить тостеры, кофе-машины, холодильники, зубные щетки, водопровод, электросеть, датчики артериального давления? Представьте, насколько изменится мир, если каждой вещью вы сможете управлять по беспроводной сети!

К примеру, вы стоите в душной пробке после тяжелого дня в офисе и мечтаете скорее попасть домой, в приятную прохладу, принять теплую ванну и выпить чашку свежего кофе. Все, что вам нужно, это озвучить смартфону все свои пожелания. А дальше он сам раздаст команды климатической технике, водопроводу и кофе-машине. К вашему приезду бризер сделает воздух свежим, кондиционер – прохладным, ванна наполнится водой комфортной температуры, а на столе будет ждать свежий американо. Неплохо звучит?

Но прежде чем фантазировать о будущем, бросим взгляд в прошлое интернета вещей.

Еще в 1926 году известный физик Никола Тесла предсказал, что радио вырастет в «большой мозг», который объединит вещи в одно большое целое. Причем все это будет возможно благодаря инструментам настолько компактным, что они поместятся в кармане.

Еще один человек, кто высказывал похожие идеи – советский военачальник Николай Васильевич Огарков. Ему принадлежит авторство так называемого сетецентрического подхода к боевым действиям. Суть принципа: все ресурсы для решения конкретной задачи должны быть в одной информационной сети и должны постоянно обмениваться данными. Чем не интернет вещей?

Но это все общие слова. Конкретика началась чуть позже. В 1990 году выпускник MIT Джон Ромки подключил к интернету свой тостер. Это первый официально зарегистрированный объект из мира интернета вещей.

К слову, Джон Ромки – один из отцов протокола TCP/IP, того самого, который лежит в основе интернета как такового. Через 9 лет после интернет-тостера другой выпускник MIT, Кевин Эштон, придумал, как управлять промышленными объектами через интернет. Эштон и стал автором термина «интернет вещей».

В том же 1999 году и в том же MIT появился Центр автоматической идентификации (Auto-ID Center). В нем исследователи развивали два основных направления: радиочастотную идентификацию (RFID) и сенсорные технологии. Об этих технологиях мы расскажем в следующий раз. Сейчас отметим только, что именно благодаря стараниям Центра автоматической идентификации концепция интернета вещей стала известной во всем мире.

Ключевое событие в развитии интернета вещей произошло не так давно, в 2008-2009 годах. Именно тогда и произошел официальный переход от интернета людей к интернету вещей. Как это определили? Очень просто: в 2008-2009 годах в интернете стало больше предметов, чем людей.

И дальше количество устройств, подключенных к интернету, только росло. Причем сумасшедшими темпами. Уже сегодня к интернету подключено 20 миллиардов самых разнообразных устройств: от промышленных станков до смартфонов.

Некоторые примеры реальных интернет-вещей в нашем мире:

  • Радиометки на теле животных
  • Миска для собак с модулем wi-fi, которая дает собаке задания и за правильные ответы награждает кормом
  • Мусорный бак на солнечных батареях, который сам уплотняет мусор и сигналит дворникам, когда наполнится
  • Умные сенсоры и водные счетчики в инфраструктуре Сан-Паулу, Пекина и Дохи сократили утечки и расходы на 50%
  • Автоматические системы сбора штрафов и оповещений об авариях и пробках на дорогах

В том, что появились «умные» вещи, нет ничего удивительного. Ведь известно, что прогресс зачастую двигает лень. Изобретение колеса, рычага, замена рычагов на кнопки, появление пультов дистанционного управления – все это человек придумал, чтобы вместо него работали механизмы и устройства.

И сейчас многие устройства из мира интернета вещей, по сути, выполняют ту же функцию, что и пульт дистанционного управления. Если раньше лампочка загоралась только после того, как человек нажмет на выключатель, то теперь свет включает и выключает запрограммированный компьютер. А человек управляет компьютером со смартфона.

Лампы стали энергоэффективными, включаются они не вручную, а через мобильное приложение. Но сам подход остался прежним: человек все еще управляет лампочкой. Как и большинством других современных интернет-устройств.

В будущем интернет вещей будет все дальше уходить от команд типа
«сделать так» к командам типа «должно быть так».

Перспективы и проблемы интернета вещей

Специалисты обещают, что к 2020 году к интернету будет подключено больше 50 миллиардов различных устройств. Раньше для всех них попросту не нашлось бы столько IP-адресов. Но сейчас новый интернет-протокол IPv6 дает фактически бесконечное количество IP-адресов. Так что с «пропиской» у интернет-устройств проблем не будет.

Другая серьезная проблема интернета вещей – бесперебойное питание приборов, без него они выпадут из сети, и все связи между ними нарушатся. Постоянно менять миллиарды батареек в миллиардах устройств расточительно, для этого нужно слишком много времени, внимания и ресурсов для создания и утилизации батареек.

Вывод : интернет-вещи должны получать энергию сами – от солнечного света, вибраций, воздушных потоков. Недавно в этой области был совершен значительный прорыв. В 2011 году ученые представили гибкий чип, наногенератор для создания энергии из любых движений человека. Так что ждем в будущем появления абсолютно автономных интернет-вещей, которым не нужны батарейки.

Третье препятствие на пути у интернета вещей – это связь приборов с самим интернетом. Далеко не в каждое устройство можно вставить модуль Wi-Fi, хотя бы из-за небольших размеров этого устройства. Но и тут достижения ученых вселяют оптимизм. Они создали микрочип размером всего 1 мм 2 с очень низким энергопотреблением. С ним выйти в сеть сможет прибор любого размера.

Наконец, главная проблема сегодняшнего интернета вещей – отсутствие единого стандарта . Сейчас система одной компании управляет отоплением, другой – светом, третья компания управляет микроклиматом. В конце концов, все эти сети объединятся в одну. Есть даже специальные организации, которые стремятся подогнать под один шаблон разрозненные сети интернет-вещей.

П осредством интернета стало возможным управлять многими вещами. Объединенные сети из компьютеров, планшетов и смартфонов уже никого не удивляют, промышленное оборудование, управляющееся из единого центра также давно не новинка.

А в скором будущем планируется объединить в единую концепцию бытовые приборы умного дома, которые будут угадывать желания владельцев и выполнять возложенные на них функции при помощи запрограммированного девайса.

Содержание статьи :

Перечисленные возможности - это мир интернет вещей , который проникает во все новые области жизни человека. Уже сейчас количество подключенных приборов перевалило за 20 млрд, а к 2020 году их число превысит отметку в 50 млрд.

Давайте рассмотрим, что такое Интернет вещей, какие примеры его использования уже существуют сегодня и что ждать в ближайшем будущем.

Что такое Интернет вещей

Прежде чем вы окунетесь во все тонкости интернета вещей, посмотрите интересное видео о том, что это такое:

Интернет вещей — это взаимодействие устройств между собой и окружающим миром, которое исключает участие человека, благодаря чему способно изменить некоторые экономические и социальные нормы.

В настоящее время пределом фантазии о развитии технологий можно считать – концептуально иной подход во взаимодействии человека с «умной» электроникой.

Если век тому назад о таком можно было только мечтать, то сегодня это – лишь очередная ступень разработок, относящаяся к не столь отдаленному будущему.

Если углубиться немного в историю, то первым человеком, упоминавшим об Интернете вещей, стал великий Тесла . Он предсказывал радиоволнам роль нейронов, которые будут управлять всеми предметами. Это было просто предсказание, которое в силу многих причин не могло получить практическое применение в то время.

Но уже менее чем через сто лет Кевин Эштен впервые применил Internet of Things (IoT) в логистике - на каждый товар была закреплена радиометка, при помощи которой отслеживалось перемещение товара по торговой цепочке, начиная от склада и заканчивая покупкой.

Вся информация о движении продукции передавалась в сеть, и когда требовалось пополнение запасов, товар не лежал на складе, а отправлялся в магазин.

Интернет вещей — это не просто автоматизация, с которой мы сталкиваемся в повседневной жизни, а нечто большее. Чтобы почувствовать отличия автоматизации процесса и концепции Internet of Things, рассмотрим пример с приготовлением кофе.

Для того чтобы попить кофе в определенный момент, вы засыпаете зерна в аппарат и устанавливаете время, когда кофемашина должна включиться. В строго обозначенный час аппарат начнет свою работу.

В то же время у вас могли измениться предпочтения, и вместо кофе вам вдруг захотелось чай или молочный коктейль. При автоматизации процесса, несмотря ни на что вы все равно получите именно кофе.

То есть, в данном случае командным центром является человек и если он не перепрограммирует кофемашину на другое время или не выключит ее, то уже ненужный кофе все-таки будет сварено.

Используя концепцию интернет вещей, вы просто меняете команду через умный гаджет, который дает сигнал на отключение кофемашины и включение чайника. Таким образом, вы получаете тот напиток, который подходит вам на данный момент.

Internet of Things дает возможность не задавать программу для достижения цели, а позволяет человеку только сформировать цель, которая будет выполнена в результате взаимодействия основного девайса, выполняющего роль единого центра, и бытового прибора, который произведет работу.

Как работает интернет вещей

Есть много сфер, где может работать интернет вещей, но прежде чем погрузиться в них, посмотрите видео о том, как он работает и какие здесь есть проблемы:

Разберемся, как функционирует интернет вещей. Чтобы это происходило, необходимо выполнение трех условий - создание единого центра, использование единого стандарта и обеспечение безопасности передачи данных.

Создание единого центра IoT исключает использование человека в передаче программ для достижения цели. Его место должно занять умное устройство, которое и будет распределять команды внутри сети между приборами.

Обмен данными должен производиться на едином языке, с которым у создателей концепции Internet of Things пока существуют серьезные проблемы.

Каждая компания, будь то Apple, Google или Microsoft, разрабатывает алгоритм отдельно, поэтому в ближайшем будущем мы можем рассчитывать только на изобретение какой-то локальной сети, которую сложно будет объединить даже в пределах одного городского района.

В будущем, наиболее удачная сеть, возможно, будет принята за стандарт и станет глобальной сетью.

Естественно, что передача данных должна происходить в полностью безопасном режиме и защищать сеть от взлома хакерами. В противном случае взломщик получит полные данные о владельце, которые сможет использовать в преступных целях.

Реальные примеры использования IoT

Если вы думаете, что концепция Интернет вещей - дело далекого будущего, то глубоко ошибаетесь. Уже сейчас мы можем представить несколько примеров, которые изменят ваше мнение. В отличие интернета для людей, IoT используется для получения практической выгоды.

Интернет вещей выполняет ряд полезных задач - максимально автоматизирует процессы, снижает временные и уменьшает материальные затраты, оптимизирует производство.

Первым реальным шагом к достижению цели стало подключение тостера к компьютеру, произошедшее в 1990 году посредством доработки его конструкции специальным чипом.

Джон Ромки , осуществивший эту процедуру, смог добиться работы тостера посредством управления им с помощью компьютера. Возможно, это имя более известно благодаря созданному позже протоколу сетевого соединения компьютер-компьютер TCP/IP, но и в истории развития технологий IoT этот человек оставил свой немаловажный вклад.

Отдельными примерами приближения очередного технологического прорыва на бытовом уровне является появление большого количества «умных» приборов, выполняющих свою функцию без участия человека. К ним можно отнести:

  • Высокотехнологичные мусорные баки, оборудованные солнечными батареями, функцией мусорного пресса и системой подачи сигнала работникам коммунальных служб при необходимости освобождения пространства;
  • Геолокационные и биометрические чипы, используемые для контроля популяций животных, а также – для контроля преступников, заключенных под домашний арест;
  • Сенсоры и водные счетчики, используемые для снижения расходов воды и нагрузок на водоканалы крупных городов (используется, в частности, в Сан-Паулу и Пекине);
  • Интерактивные миски для собак, открывающие доступ к корму только при выполнении определенных условий или заданий.

Перечень «умных» приборов растет день ото дня, их разработкой занимаются десятки компаний по всему миру. Преимущественно рассматриваемые приборы предназначаются для обустройства бытовых нужд, но у Интернета вещей все еще впереди.

Использование Internet of Things позволило :

  • Снизить аварийность и сырьевые потери на транспорте и в производстве.
  • Эффективно распределять электричество в сфере энергетики.
  • Заменить человека при управлении оборудованием в промышленности.
  • Контролировать безопасность на улице.

Яндекс. Навигатор

Известная в России и в странах ближнего зарубежья система, есть не что иное, как использование IoT в управлении транспортом. Принцип действия следующий - гаджеты (планшеты, смартфоны) передают в компанию Яндекс направление движения автомобиля, координаты и скорость перемещения.

Вся информация анализируется на сервере и в обработанном виде передается на смартфон водителю, показывая заторы и пути их объезда.

То есть, обмен данными между сервером, приложениями и смартфонами происходит без участия человека и представляет собой пример использования интернет вещей.

Уже сейчас водители сокращают время в дорогах, объезжая пробки по оптимальному маршруту, а в дальнейшем сервис позволит разгружать магистрали и максимально минимизировать пробки.

Internet of Things в спорте

В спорте IoT используется для анализа физических кондиций спортсменов. На участника соревнований устанавливаются датчики, которые анализируют пульс, данные о перемещениях.

Медицинская телеметрия, другие значения отправляются на облако, откуда тренерская бригада команды получает всю информацию о состоянии спортсменов, не дожидаясь перерыва в состязаниях, и уже по полученным данным вносит изменения в игру.

Вся необходимая информация также поступает в онлайн режиме медицинским работникам, которые своевременно могут оказать помощь травмированному или потерявшему кондиции участнику матча.

IoT в системе ЖКХ

Установка умных счетчиков на воду, газ и электроэнергию позволяет передавать данные по расходу ресурсов с каждого домовладения на облачные технологии.

Диспетчер в режиме онлайн видит информацию по отдельно взятой квартире, микрорайону или в масштабе города, что позволяет без использования труда обходчиков получать данные по счетчикам, на основании которых выставлять счета.

Из цепочки потребитель-поставщик услуг выпадают посредники, обслуживающие дома, что дает возможность выигрывать в материальном и временном плане.

Механизм учета ресурсов с использованием IoT технологий позволяет максимально автоматизировать диспетчерские функции и улучшить качество обслуживания.

Сельское хозяйство

Во многих странах Интернет вещей используется при выращивании сельскохозяйственной продукции. Для этого применяются датчики, которые закрепляются за определенным участком или конкретным растением.

Устройство регистрирует данные по состоянию грунта (влажность, температура, другие параметры), которые отправляются на облачную платформу.

С нее данные поступают на сервер, после чего выдаются на монитор, транслируя информацию по состоянию саженца, делаются выводы по улучшению его плодоносных свойств.

К примеру, в Израиле половина всех производителей томатов и более 30% фермерских хозяйств по выращиванию хлопка уже используют IoT технологии при мониторинге почв. Активное внедрение происходит и в других развитых странах.

Промышленность

Одно из швейцарских предприятий, занимающееся производством оборудования, разработало промышленный интернет вещей — IoT платформу по проведению технического обслуживания своей техники на различных производственных площадках.

Концепция Internet of Things объединила более 5 тыс. единиц оборудования. Теперь, если в технике наблюдается износ какого-либо узла, в главный центр поступает сигнал о необходимости профилактики и ремонтники выезжают на место.

Введение технологии IoT позволило прибывать на участок обслуживания только по мере необходимости.

Раньше плановые обходы часто проводились вхолостую, а финансовые затраты за обслуживание бригадами обходчиков были существенными.

Кроме того, во время проведения планово-предупредительного ремонта приходилось останавливать, часто без надобности, целые производственные линии, что несло дополнительные убытки.

Вообще, промышленность более других ждет повсеместное внедрение интернет вещей, так как это поможет максимально минимизировать в производственном процессе человеческий фактор и снизить дополнительные риски.

Медицина и безопасность

Интернет вещей в медицине позволяет круглосуточно контролировать состояние пациента. Для этого на него устанавливают один или несколько датчиков, данные с которых поступают в медицинский центр.

В режиме онлайн отслеживается работа больных органов и общая физическая форма больного. Информация передается лечащим врачам и в лаборатории, где проводится ее мониторинг и в случае необходимости выполняется корректировка лечебного процесса, принимаются дополнительные решения.

Кроме того, специальные радиочипы, установленные на лекарства, в реальном времени позволяют отслеживать количество лекарственных препаратов в медучреждении и своевременно пополнять их запасы.

Внедряются технологии Internet of Things и в обеспечение безопасности объектов. На одной из военных баз РФ на часовых надели специальные электронные браслеты, которые контролируют их состояние и своевременно отсылают данные о проблемах в центр управления.

Если военный в течение полуминуты не двигается, то датчик отправляет сигнал на центральный компьютер, который возвращает его солдату в виде звукового сигнала после чего, если в течение 15 сек. человек так и не совершил движения, объявляется тревога и на проблемное место отправляется караул.

Internet of Things: реальность и ожидания

Ожидаемым эффектом появления системы Internet of Things является унификация всех «умных» приборов под единые стандарты. В реальности все выглядит несколько сложнее – каждый разработчик пытается найти собственное решение, ввиду чего объединить приборы разных производителей в единую сеть будет трудновыполнимой задачей.

С помощью постепенного внедрения Интернета вещей в теории можно было бы создать целые автономные предприятия, не зависящие от человека и не требующие постоянного присутствия работников.

Эта система могла бы объединить собой целые города и страны, а возможно – и всю планету (по крайней мере, обжитую часть суши ).

Но в настоящее время прогресс направлен на нужды потребителя, готового заплатить за покупку новых технологичных помощников немалые деньги – и у некоторых ученых возникают вполне резонные опасения, что мощный проект, в теории способный объединить и облагодетельствовать все человечество, будет похоронен коммерцией и жаждой прибыли еще до получения достойного развития.

Интернет вещей в своем идеальном формате должен превратить каждый подключенный прибор если не в личность, то в индивидуума, способного накапливать «опыт» и самостоятельно принимать решения, основываясь как на своей базовой функциональности, так и в соответствии с другими факторами.

В современных реалиях это кажется весьма трудновыполнимым, поскольку для хранения общей для всех приборов базы данных потребуется по-настоящему мощный сверхкомпьютер с титаническим объемом памяти.

Проблемы реализации системы IoT

Отличие ожидаемого результата от действительности объясняется наличием многочисленных проблем в реализации Интернета вещей. В чем они выражаются?

Необходимость поиска альтернативных методов программирования – это один из основных сложных моментов, и об него программисты всего мира спотыкаются до сих пор.

Современная «умная» техника действует с помощью запрограммированных алгоритмов, зиждущихся на базовых логических командах и блоках. Весь «ум» прибора кроется в коде программы, которая имеет один огромный минус, заключающийся в отсутствии возможности развития.

Поэтому прибор просто выполняет заданный алгоритм и имеет некоторое количество сценариев действия при получении различных ответов в процессе исполнения.

При возникновении конфликта между алгоритмом действия и возникшими обстоятельствами, не предусмотренными программой, программа или даст сбой, или предоставит не тот результат, которой от нее ждали. И, что самое важное – не научится на этом опыте: потребуется программист, который придумает, как заставить программу выйти из подобной ситуации.

Раздробленность разработок – вторая по значимости проблема. Собравшись в единый кулак, корпорации-гиганты Apple, Windows, Google и многие другие смогли бы достичь куда более конкретных результатов. Они не тянут друг друга в разные стороны и даже создают друг другу конкуренцию, но в итоге вынуждены по нескольку раз разрабатывать уже достигнутый кем-то другим результат.

Третьей проблемой является вопрос энергоснабжения. Для корректной работы Интернета вещей даже в рамках отдельно взятого жилого помещения питание всех подключенных приборов должно быть бесперебойным.

Подключение всех приборов в единую сеть Internet of Things вызовет резкий дефицит энергетических ресурсов, который требуется восполнить заранее – либо обнаружить альтернативные, более дешевые и надежные источники энергии.

Кроме того, далеко не все смогут позволить себе оборудовать свой быт вещами из мира высоких технологий.

Переход же к этапам «умного города», «умной страны» и «умной планеты» от «умного дома» без этого будет положительно невозможен. Вывод напрашивается сам собой: интеграция Интернета вещей не должна зависеть от доходов обывателей, но найти того, кто возьмется оплачивать такую инициативу, будет крайне затруднительно.

Слабые места и уязвимости интернета вещей

Увы, идея Интернета вещей имеет свои слабые места и уязвимости. Некоторые из них могут показаться смешными, другие же – вполне серьезны. Над их решением уже пытаются работать, но современный уровень технологий не позволяет решить все и сразу.

  • Зависимость элементов системы друг от друга . Сбой или поломка одного элемента вызовет цепную реакцию, из-за чего Интернет вещей будет решать поставленные задачи нетривиальными способами, провоцировать сбой других устройств или попросту отключаться. К примеру, на «умном» термометре даст сбой температурный датчик – и «умный» гардероб, основываясь на его показаниях, посоветует хозяину одежду не по погоде.
  • Страх перед хакерскими атаками . Разумеется, страшных компьютерных гениев, которых любят показывать в кино, в природе не существует – однако способы взломать любой запрограммированный прибор имеются (хоть они и не так зрелищны). Получив доступ к информации одного «умного» прибора в «умном» доме, взломщик сможет буквально держать руку на пульсе его владельца, зная о нем практически все.
  • Возможное восстание машин . Если дать машинам искусственный интеллект и машинное обучение вместе с центральным компьютером, выполняющим функции энциклопедического мозга, они со временем могут «понять», что достойны большего, чем услужение людям. Скорее всего, это завершится грандиозным сбоем во всей системе, но исключать варианты с агрессивным поведением «умных» приборов тоже не стоит.
  • Тотальная зависимость системы от энергетических ресурсов . Даже если человечество перейдет на фактически неисчерпаемые ресурсы в виде альтернативных источников бесплатной энергии (солнечный свет, геотермальные ТЭС и т.д.), для полного вывода системы из строя на определенном участке потребуется просто вывести из строя источник энергии. По этой причине данная разработка вряд ли будет применяться в военных целях, оставив войну людям: управляемое электромагнитное поле, доступное уже сейчас, сжигает любую электронику, какой бы «умной» она ни была.
  • Возможная деградация человечества вследствие критического упрощения жизни . Пример можно наблюдать в мультфильме «Валли», где находящиеся на попечении роботов люди не имеют сил даже на то, чтобы выбраться из кресел.

Некоторые из этих уязвимостей можно считать фантастическими и невозможными, однако не стоит забывать, что до недавнего прошлого и сам был невозможен. С уровнем роста технологий изменяются и границы возможностей – и об этом не стоит забывать.

Необходимое послесловие

Что принесет миру Internet of Things?

Возможно, полное подключение к нему избавит человечество от лишних амбиций и откроет ему путь в золотой век, эпоху торжества науки. Возможно, в результате нас ждет всеобъемлющий пост-апокалипсис в духе братьев Вачовски по трилогии «Матрица».

Насколько корректен термин Internet of Things (IoT) и что сопутствовало его возникновению? Ответы на эти вопросы дает материал, который для TAdviser подготовил журналист Леонид Черняк.

IoT не интернет, а всего лишь PaaS?

В семидесятые годы прошлого века, с того времени, когда компьютеры престали быть единичными и уникальными изделиями, началась массовая автоматизация по двум практически независимым направлениям. Одно – автоматизация бизнес-процессов , которую мы его называем информационными технологиями (ИТ - IT, Information Technology). Другое - автоматизация технологических процессов, это направление в противовес ИТ стали называть операционными технологиями (OT, Operational Technology).

Стоит уточнить, ИТ имеют дело не с информацией, а с данными, поэтому их бы так точнее стоило бы называть «технологии данных». ИТ объединяют в себе компьютеры, системы хранения данных и сети с процессами создания, обработки, хранения, обеспечения безопасности и обмена любыми формами электронных данных. ОT- это тоже комплекс аппаратного и программного обеспечения, но предназначенного для контроля и управления физическими процессами.

В СССР стали популярны термины АСУ (Автоматизированные Системы Управления) и АСУ ТП (Автоматизированные Системы Управления Технологическими Процессами).

Более сорока лет ИТ и ОT развивались независимо, и за это время приобрели черты, существенно различающие их. Но во втором десятилетии XXI века под влиянием ряда факторов, в том сенсорной революции, развития сетевых технологий, облачного компьютинга, аналитики и других современных трендов начался процесс конвергенции (IT/OT convergence), объединяющий два подхода – ориентацию на данные и ориентацию на события в физическом мире.

В отдаленной перспективе стоит ожидать появления единого целого, состоящего из традиционных технологий для работы с данными и из промышленным систем управления (ICS) и систем диспетчерского управления и сбора данных (SCADA). Возможно, в конечном итоге это будут киберфизические системы или даже социальные киберфизические системы.

Киберфизические системы (Cyber-Physical-System) - это системы, состоящие из различных природных объектов, искусственных подсистем и управляющих контроллеров, позволяющих представить такое образование как единое целое. В CPS обеспечивается тесная связь и координация между вычислительными и физическими ресурсами. Область действия CPS распространяется на робототехнику, транспорт, энергетику, управление промышленными процессами и крупными инфраструктурами. Социальные киберфизические системы Cyber-Physical-Social Systems (CPSS) объединяют физический, кибернетический и социальный миры, обеспечивают взаимодействие между ними в реальном времени.

Процесс объединения ИТ и OT чрезвычайно сложен, он обсуждается на разных уровнях, в первую очередь в диалоге между двумя крупнейшими комитетами по стандартизации International Society for Automation (ISA) и Industrial Internet Consortium (IIC).

На маркетинговом уровне, в масс-медиа для обозначения решений, нацеленных на IT/OT convergence, чаще всего используют термин Industrial Internet или Industrial Internet of Things (IIoT). То, как это делается, чаще всего отражает избыточно восторженное отношение к феномену IoT и упрощенное отношение к переносу принципов IoT в индустрию. В Wikipedia статье Internet of Things есть специальный раздел «Критика и противоречия» , где показаны проблемы, связанные с IoT.

В IIoT проблем будет еще больше, потому что объемы данных, генерериуемые промышленными машинами, больше, чем бытовыми, а вопросы безопасности - критичнее. Обеспечить адресацию ко всем возможным устройствам по протоколу IPv6 (Internet Protocol version 6) далеко не достаточно для решения проблем IT/OT convergence. Поэтому, если судить по гамбургскому счету, никого интернета вещей нет, а за разрекламированной ширмой под названием IIoT скрывается сервисная платформа PaaS с доступом к облачным ресурсам по интернету.

Что такое IoT?

При первом, не слишком глубоком знакомстве с IoT общая идея интернета вещей и ее перспективы показались очень привлекательными. Но по прошествии нескольких лет, при более внимательном анализе этой темы возникли определенные сомнения, не в последнюю очередь вызванные чудовищным маркетинговым хайпом, сопутствующим IoT.

IoT вызывает ряд вопросов:

  • Насколько корректно словосочетание «Интернет вещей»?
  • Как Internet of Things (IoT) связан с сетью интернет?
  • Каким образом интернет может быть образован из вещей?

Возникновение этих и подобных вопросов закономерно хотя бы потому, что известные определения IoT, предлагаемые не кем-нибудь, а ведущими отраслевыми аналитиками, мягко говоря, ясности не прибавляют.

  • IDC - Internet of Things – это сеть сетей с уникально идентифицируемыми конечными точками, которые общаются между собой в двух направлениях по протоколам IP и обычно без человеческого вмешательства»
  • Gartner - Internet of Things - это сеть физических объектов, которые имеют встроенные технологии, позволяющие осуществлять взаимодействие с внешней средой, передавать сведения о своем состоянии и принимать данные из вне».
  • McKinsey – Internet of Things – это датчики и приводы (исполнительные устройства), встроенные в физические объекты и связанные через проводные или беспроводные сети с использованием протокола Internet Protocol (IP), который связывает Интернет».

Такого рода определения вызывают когнитивный диссонанс, то есть, состояние, о котором в энциклопедиях пишут «психический дискомфорт, вызванный столкновением в сознании индивида конфликтующих представлений: идей, верований, ценностей или эмоциональных реакций».

Начнем с того, что интернет или просто сеть - это всемирная система объединенных компьютерных сетей, служащая для хранения и передачи данных. Она построена на базе стека протоколов TCP/IP . Функция сети сводится к передаче пакетов данных, не более того. Этот факт знают далеко не все, для подавляющей части населения сеть известна тем, что на ней работает всемирная паутина WWW, в обыденном сознании WWW и интернет тождественны. Но есть еще и масса других систем передачи данных, в том числе обмен файлами, телефония, многое другое. В том числе, интернет вполне разумно использовать для организации обмена данными между вещами. Со стороны сети никаких ограничений нет. Почему же мы говорим о сети вещей, как о чем-то отдельном и особенном? Никому в голову не придет назвать WWW «Интернетом текстов».

Скорее всего, мы стали жертвой недоразумения, потому, что, говоря о IoT, обычно подразумевают не просто коммуникации, в что-то аналогичное WWW, нечто вроде паутины вещей, это обстоятельство было осознано относительно недавно и появился соответствующий термин Web of Things (WoT), который точнее подходит к идеальному представлению об IoT.

Подмена понятий возникла и укрепилось из-за отсутствия должного понимания различий между интернетом и WWW. Всемирная паутина - это распределенная система, предоставляющая доступ к связанным между собой документам, расположенным на различных компьютерах, подключенных к интернету. Возможность доступа к документам обеспечивается языком разметки HTML (HyperText Markup Language). Стандартным образом размеченные HTML-файлы (веб-страницей) являются основным типом ресурсов всемирной паутины.

Сами по себе текстовые документы не сложны, поэтому стандарты, разработанные консорциумом W3C, получились ясными и понятными, а трех вещей - уникальной системы адресации документов URL/URI, языка HTML и протокола HTTP - оказалось достаточно для того, чтобы обеспечить человечеству возможность коммуникации.

Скорее всего, в терминологической путнице напрямую «виноват» Кевин Эштон, предложивший термин Internet of Things, хотя в 1999 году он думал не о сети вещей, а о паутине вещей. Вот, что он написал позже в 2009 году:


Совершенно очевидно, он признает, что речь не идет о сетях передачи данных, а о некоторой информационной паутине, состоящей из образов вещей.

Если бы Эштон использовал большее точный термин Web of Things (WoT), то нам не пришлось мучительно истолковывать IoT. Когда говорят об авторстве на термин IoT, забывают, что еще в середине 90-х была компания Integrated Systems Inc. (ISI), предложившая бизкую по смыслу идею встроенного интернета (Embedded internet) . Тогда по наивности казалось, что для связи между вещами достаточно установить на встроенный процессор разработанную ISI операционную систему PSOS. Жизнь показала, что проблема существенно сложнее.

Сейчас академическое сообщество активнейшим образом занято разработкой WoT. В консорциуме W3C создана рабочая группа Web of Things Interest Group, ведутся работы, нацеленные на разработку стандартов, но это дело чрезвычайно долгое, поскольку устройства (вещи) не сравнимы по сложности и разнообразию с текстами. Соответственно стандартизация взаимодействия между устройствами на порядки сложнее того, что было сделано для текстов. Эти работы займут не один год.

А до тех пор придется смириться и со скорбью приять существующую трактовку IoT, согласившись с тем, что «термин занят», но понимая при этом, что никакого интернета вещей нет и быть не может, хотя когда-то может быть и будет создан веб-вещей. Поучается как с названием газеты МК, образованного от «Московского комсомольца», но с точностью до наоборот. Комсомола уже давно нет в природе и, скорее всего, больше никогда не будет. А IoT аббревиатура - от Internet of Things: от того, чего по существу еще нет в полном объеме, но когда-нибудь, вероятно будет что-то подобное.

Как устроен интернет вещей

IoT-платформы

Интернет вещей как «сеть сетей»

Промышленный IoT-сегмент

В статье перечислены основные бизнес-модели, по которым будут внедряться IoT в ближайшее время. Первая бизнес-модель – «нормативный контроль». Соблюдение требований контролирующих организаций является необходимым условием для ведения бизнеса, но прямой экономической выгоды они компаниям не приносят, несмотря на значительные затраты. В контексте данной ситуации IoT обладает огромным потенциалом по сокращению издержек в этой области.

Вторая бизнес-модель – «превентивный контроль»: IoT позволяют своевременно выявлять предпосылки для аварийных ситуаций и снижения эффективности работы оборудования. Благодаря IoT можно запустить дистанционный мониторинг и следить за работой оборудования онлайн в реальном времени.

Третья бизнес-модель – «дистанционная диагностика». Датчики IoT могут использоваться для диагностики устройств, на которых они установлены, и автоматически реагировать на изменения их состояния.

Четвертая бизнес-модель – «контроль операций». С помощью IoT можно контролировать цепочку технологических операций, осуществлять контроль перемещения любых устройств и автоматически отслеживать их характеристики в реальном времени. Это позволяет избавиться от воровства и неконтролируемых потерь, повысить эффективность работы подконтрольных объектов, где установлены «умные» датчики, добиться предсказуемости их эксплуатации.

Пятая бизнес-модель – «автоматизация операций». Приход IoT позволяет автоматизировать часто повторяющиеся операции, повышая эффективность работы, качество досуга, степень удовлетворенности клиентов. Достоинство таких IoT-гаджетов выражается не только в упрощении рутинных операций. Они стимулируют продажи, позволяя автоматизировать привычки.

Технологии IoT

Техническая и коммерческая платформа для IoT

Успешная реализация решений на базе всеобъемлющего интернета – не изолированный и независимый процесс. В Cisco считают, что для этого требуется техническая и коммерческая платформа, на которой можно будет легко выстраивать различные решения для рационального и эффективного достижения обещанных коммерческих преимуществ. В основе такой платформы интернета лежат надежная связь и технологическая инфраструктура, операционные и управленческие сервисы, а также ряд вертикальных и горизонтальных решений.

Опыт Cisco показывает, что для реализации решений на базе Всеобъемлющего Интернета все технические и коммерческие элементы должны обеспечивать нужный результат. Эффективное развертывание систем Всеобъемлющего Интернета обеспечит такую платформу для всего бизнеса или даже для всех отраслей, которая позволит реализовывать целый ряд уникальных прибыльных решений на базе IoE.

Уровни, начиная с нижнего:

  1. cетевые подключения – соединение всех решений, данных и приложений посредством оптоволоконной транзитной или лицензированной сотовой сети.
  2. Сетевой доступ – управляемая сеть Wi-Fi или иная нелицензированная беспроводная сеть для подключения всех датчиков и приложений.
  3. Технологическая платформа – платформа, обеспечивающая быстрое и надежное подключение новых устройств к архитектуре по принципу «подключи и работай», а также соединение с облачными сервисами хранения и обработки данных.
  4. Вертикальные и горизонтальные решения – совокупность устройств и приложений, обеспечивающая уникальные решения для различных вертикальных и горизонтальных отраслевых сегментов.
  5. Платформа монетизации – в некоторых вертикалях, таких как «умные» города и сегмент B2C, существуют возможности эффективного использования платформы для создания новых источников прибыли.
  6. Общая платформа управления – общая платформа, обеспечивающая управление, обслуживание клиентов и сервисы для всех решений.
  7. Профессиональные услуги – специальные сервисы, такие как интеграция систем, планирование и проектирование.
  8. Руководство проектом – сервисы по управлению проектом, операциями и экосистемой партнеров.

Успешное развертывание решений и получение огромной потенциальной выгоды от Всеобъемлющего Интернета зависит не только от классных вещей и приложений. Для воплощения идей и ожиданий в жизнь необходима комплексная, техническая, операционная и организационная платформа Всеобъемлющего Интернета.

Встраиваемые системы в экосистеме интернета вещей

Мировой рынок встраиваемых систем растет, что обусловлено увеличением спроса на портативные компьютерные устройства и встраиваемые решения M2M. Другими ключевыми драйверами роста в последние годы стали тенденция к автоматизации обрабатывающей промышленности, непрерывная эволюция всепроникающей компьютеризации, а также широкое распространение интернета вещей .

Быстрый рост рынка встраиваемых систем во многом обусловлен стремительным развитием Интернета вещей . Ожидается , что к 2020 году к глобальному Интернету вещей будет подключено более 30 млрд. устройств.

Современная концепция Интернета вещей подразумевает, что все современные устройства независимо от платформы должны иметь возможность совместно функционировать с другими устройствами и сервисами, образуя единую взаимосвязанную экосистему, а не существовать изолированно.

Именно эта предпосылка является одной из основных причин трансформации рынка встраиваемых систем. Сегодня он двигается в направлении разработки интеллектуальных систем (датчиков, машин, механизмов, приборов и т.д.), объединенных в единую глобальную вычислительную сеть с целью получения и обработки данных для повышения эффективности производства (в промышленной сфере) или комфорта и удобства пользователя (на уровне потребителя).

Развертывание таких интеллектуальных систем требует слаженной работы сразу нескольких участников рынка, включая как поставщиков комплектующих (все тех же процессоров, микропроцессоров, контроллеров, датчиков и т.д.), так и производителей конечных продуктов (потребительская электроника, промышленное оборудование, автомобили, самолеты… список поистине безграничен) и производителей программного обеспечения, способных кастомизировать все эти встраиваемые системы для отдельно взятых заказчиков, подключить их к «облакам» и обеспечить их взаимодействие с другими системами в инфраструктуре заказчика.

Сотрудничество производителей встраиваемых решений и разработчиков ПО

При таком значительном росте рынка встраиваемых систем и количестве конечных подключенных к сети и друг к другу устройств уже сейчас чувствуется серьезная потребность в разработчиках программного обеспечения, понимающих всю сложность экосистемы, в которой развиваются производители компонентов, плат, поставщики готовых систем и компании-интеграторы, и обладающих серьезным опытом в области разработки встраиваемых решений.

Говоря проще, кто-то должен «заставить» датчики заговорить на языке производителя устройства или оборудования и конечного пользователя, то есть обеспечить сбор необходимой информации, ее анализ, отображение и взаимодействие с другими системами производителя. Отдельные детали этого «языка» могут отличаться в зависимости от задач конкретного производителя (OEM), а для кастомизации под отдельных заказчиков у производителей датчиков (контроллеров, микропроцессоров и т.д.) не всегда имеются достаточные ресурсы и возможности. Именно на этом этапе требуется поддержка опытной компании-разработчика встраиваемых решений.

Технологические проблемы развития

Есть факторы, способные замедлить развитие интернета вещей. Из них самыми важными считаются три: переход к протоколу IPv6, энергопитание датчиков и принятие общих стандартов.

Дефицит адресов и переход к IPv6

В феврале 2010 года в мире не осталось свободных адресов IPv4 . Хотя рядовые пользователи не нашли в этом ничего страшного, данный факт может существенно замедлить развитие Интернета вещей, поскольку миллиардам новых датчиков понадобятся новые уникальные IP-адреса. Кроме того, IPv6 упрощает управление сетями с помощью автоматической настройки конфигурации и новых, более эффективных функций информационной безопасности .

Питание датчиков

К началу ноября 2014 года разработкой универсальных спецификаций для «умной» электроники и соответствующей программы сертификации занимаются несколько организаций, среди которых альянс Open Connectivity Foundation (OCF) , в который входят

Ноутбуки