Как работает фотоаппарат. Ликбез: как работает цифровая камера. Диафрагма и ее функции

96732 Фотография с нуля 0

В этом уроке вы узнаете: Принцип действия фотоаппарата. Из каких основных элементов состоит фотокамера.

Принцип действия цифровой фотокамеры

Фотография прежде всего связана со светом. Рассмотрим рисунок.

Свет от солнца или искусственного источника (1) сначала отражается от сцены, находящейся перед объективом фотокамеры, а затем проходит через объектив (2) и, если он есть, затвор (7) (о затворе вы узнаете чуть позже в этом уроке) к задней стенке корпуса камеры - на матрицу (сенсор) (8). В зеркальной фотокамере (DSLR) до нажатия на кнопку спуска затвора свет, отраженный зеркалом (3), пройдя через призму (4) - попадает в видоискатель (5). При съемке зеркало поднимается, и свет попадает на матрицу, как в компактной камере. В некоторых зеркальных камерах Sony зеркало неподвижное, полупрозрачное (SLT камеры).

Этот процесс аналогичен прохождению света через хрусталик человеческого глаза к колбочкам и палочкам, расположенным на задней стенке глаза, а также к зрительным нервам. Когда же свет достигает задней стенки корпуса, он попадает на чувствительный элемент (датчик изображения), который преобразует свет в электрическое напряжение. Затем полученная таким образом информация обрабатывается процессором для исключения помех, расчета значений цвета, формирования файла данных изображения и записи этого файла на носитель информации (карту для хранения цифровых изображений). После этого фотокамера подготавливается к экспонированию следующего изображения.

Весь этот процесс, в течение которого огромное количество информации обрабатывается и записывается на носитель, происходит довольно быстро.

Ниже представлены рисунки, дающие представление об основных элементах, из которых состоит компактная (беззеркальная) и зеркальная фотокамера.

Компактная фотокамера

Зеркальная фотокамера

Рассмотрим подробнее эти основные элементы, из которых состоит цифровая фотокамера и которые позволяют свету, отраженному от объекта съемки, стать фотографией.

Объектив

Объектив фотокамеры представляет собой весьма сложную конструкцию. Как правило, он состоит из целого ряда стеклянных линз, преломляющих и фокусирующих свет, поступающий в объектив. Благодаря этому увеличивается изображение снимаемой сцены и осуществляется фокусировка на конкретной точке. Подробнее об объективах вы узнаете из последующих уроков.

Видоискатель и экран ЖКИ

Видоискатель позволяет видеть изображение в момент его съемки и некоторые из параметров съемки, и представляет собой небольшое окно, в которое наблюдается снимаемая сцена. С его помощью уточняется композиция непосредственно перед съемкой.

Экран ЖКИ обеспечивает предварительный просмотр снимков перед их получением, а также последующий просмотр и анализ только что сделанных снимков относительно правильности установленной экспозиции и композиции либо для показа их окружающим. Кроме того, на экране ЖКИ могут быть просмотрены любые сделанные ранее снимки.

В цифровых фотокамерах экран ЖКИ также может выполнять функцию видоискателя. Вместо того, чтобы подносить фотокамеру к глазу для составления композиции снимаемой сцены, подготовить ее к съемке можно в любом положении, наблюдая на экране ЖКИ изображение еще до того, как оно будет зафиксировано. Один из недостатков экранов ЖКИ заключается в высоком потреблении энергии от батареи питания фотокамеры. Кроме того, просматривать изображения на экране ЖКИ в солнечный день на улице практически невозможно.

Несмотря на все перечисленные выше преимущества экрана ЖКИ, в цифровой фотокамере иногда полезным оказывается и видоискатель. В частности, когда заряд батареи питания на исходе и поэтому нецелесообразно расходовать драгоценную энергию на питание экрана ЖКИ. Как бы там ни было, но видоискатель по-прежнему служит удобной альтернативой экрану ЖКИ при составлении композиции фотографии.
Что же касается зеркальных цифровых фотокамер, то видоискатель и экран ЖКИ показывают одно и то же изображение, поскольку в этом случае для проецирования изображения из объектива в видоискатель используются зеркала. В компактных цифровых фотокамерах видоискатель служит в качестве простого окна, в которое видно снимаемую сцену, а не изображение, проецируемое через объектив для предварительного просмотра. Но поскольку видоискатель находится не в том месте, где и объектив, наблюдаемая в него перспектива оказывается несколько иной.

Затвор

Затвор представляет собой сложный механизм, точно управляющий продолжительностью прохождения света через объектив к пленке или цифровому чувствительному элементу, расположенному на задней стенке корпуса фотокамеры.

В цифровой фотокамере затвор в традиционном смысле может и не понадобиться, что зависит от типа используемого датчика изображения. Так как датчик изображения цифровой фотокамеры является электронным прибором, а не светочувствительным химическим веществом, он может включаться или выключаться электронным путем. Следовательно, необходимость в наличии механического затвора, управляющего поступлением света в фотокамеру, отпадает. Тем не менее для некоторых типов фотокамер затвор все же требуется, хотя во многих моделях цифровых фотокамер механический затвор не применяется.

Независимо от наличия или отсутствия механического затвора в цифровой фотокамере по-прежнему необходим механизм для управления экспонированием изображения, а также кнопка спуска затвора. При нажатии кнопки спуска затвора активизируется целый ряд действий, приводящих в итоге к получению окончательного изображения. Прежде всего необходимо зарядить датчик изображения, чтобы подготовить его к восприятию света из объектива.

Кнопки для настройки фотокамеры

На корпусе камеры имеется множество кнопок, рычажков, дисков, назначение которых лучше всего описано в инструкции к вашей фотокамере. Большинство из них служат для подготовки фотокамеры к съемке, ее настройки и непосредственно съемки.

К ним относятся: установка режима автоматической фокусировки, выбор подходящего баланса белого для обеспечения правильной передачи цветов снимаемой сцены в зависимости от вида используемого освещения, выбор режима экспозиции и т.д. Подробнее об этих и других параметрах вы узнаете из последующих уроков.

Датчик изображения

Датчик изображения состоит из миллионов отдельных светочувствительных пикселей. В этих пикселях, по сути, выполняется преобразование света в электрическое напряжение.

Несмотря на то что цифровые фотокамеры позволяют делать многоцветные снимки, их датчики изображения не воспринимают цвет. Они способны реагировать только на относительную яркость сцены. Для ограничения спектра света, на который реагирует каждый пиксель датчика изображения, применяются специальные цветные светофильтры. Таким образом, в каждом пикселе может быть зарегистрирован только один из трех основных цветов (красный, зеленый или синий), которые необходимы для определения окончательного цвета пикселя. А для определения значений двух остальных основных цветов каждого пикселя применяется интерполяция цвета.

Подробнее о датчиках изображения вы узнаете из нашего следующего урока.

Встроенная вспышка

Встроенная вспышка есть в большинстве моделей цифровых фотокамер. Безусловно, это очень удобно, поскольку света в окружающих условиях зачастую не хватает. С другой стороны, вспышки, встроенные во многие фотокамеры, далеко не всегда оказываются практичными. Отчасти это связано с отсутствием контроля встроенной вспышки. Ведь в большинстве моделей цифровых фотокамер нельзя регулировать мощность встроенной вспышки, и поэтому при оценке уровня освещения приходится полностью полагаться на фотокамеру.

Невозможность регулировать мощность и положение встроенной вспышки превращается в серьезное препятствие при съемке объектов, расположенных близко к фотокамере. В этом случае вспышка слишком сильно освещает сцену, а изображение получается чрезмерно контрастным. Из-за того, что встроенная вспышка находится очень близко к объективу, на снимках зачастую возникает эффект «красных глаз».

Для установки на фотокамеру внешней вспышки и другого необходимого оборудования (видоискателя при его отсутствии в камере, микрофона и т.д.) служит разъем "горячий башмак".

Носители цифровой информации

В цифровой фотокамере каждое зафиксированное изображение записывается на карту-носитель цифровой информации. В какой-то степени эта карта заменяет пленку (и поэтому иногда называется цифровой пленкой), однако у нее есть свои особенности.

Носители цифровой информации бывают самых разных форм и размеров: от формата книги до величины пластинки жевательной резинки и даже меньше. А в некоторых даже имеется возможность использования нескольких типов носителей, что дает дополнительные удобства.

Питание цифрового фотоаппарата

В качестве источника питания в цифровых фотоаппаратах наиболее часто применяются перезаряжаемые элементы - аккумуляторы. По размерам корпуса элементы подразделяются на несколько типов. В цифровой съемочной технике применяются элементы формата ААА и АА (говоря проще "самые тонкие" и "тонкие батарейки") или имеется фирменный, не совместимый с камерами других производителей, конструктив. Размещаются элементы питания в специальном отсеке камеры, где иногда некоторые ищут кнопку "шедевр" :))).

В зеркальных и некоторых беззеркальных фотокамерах со сменной оптикой применяются батарейные блоки, где размещены несколько аккумуляторов, что значительно увеличивает время автономной работы фотоаппарата.

Итоги занятия:

Итак, мы рассмотрели основные элементы конструкции цифровой фотокамеры. Очень важным предметом, который часто забывают изучить, а иногда просто теряют, является руководство по фотокамере.

Анализируя поисковые запросы, которые приводят посетителей на наш сайт, констатирую, что вопросов "как включить" какую либо функцию камеры очень много. Для того чтобы максимально использовать возможности вашей фотокамеры, необходимо внимательно прочитать прилагаемое к ней руководство, что пользователи довольно часто ленятся делать, полагаясь на свои способности разбираться в новой аппаратуре по ходу дела. Как показывает практика - не разберетесь или станете разбираться в самый неподходящий момент.

Это и есть ваше первое практическое задание - внимательно изучить руководство (или инструкцию) по эксплуатации вашей фотокамеры.

На вопросы по теме первого урока, по изложенному материалу и по практическому заданию вы можете задать на сайта.

И в завершении - небольшой видеоролик "Как работает зеркальный цифровой фотоаппарат".

В следующем уроке №2: Типы фотокамер. Основные характеристики современных фотоаппаратов. Узнаем подробнее о сенсорах. Поговорим о мегапикселях. Расскажем, как выбрать фотокамеру.

Если кто не читал статью, настоятельно рекомендую ознакомиться, потому что тема сегодняшней статьи будет перекликаться с предыдущей. Для всех остальных еще раз повторю резюме. Существует три типа фотоаппаратов: компактные, беззеркальные и зеркальные. Компактные – самые простые, а зеркальные – самые продвинутые. Практический вывод статьи заключался в том, что для более-менее серьезного занятия фотографией следует остановить свой выбор на беззеркалках и зеркалках.

Сегодня мы поговорим об устройстве фотоаппарата. Как и в любом деле, нужно понимать принцип работы своего инструмента для уверенного управления. Не обязательно досконально знать устройство, но основные узлы и принцип действия понимать надо. Это позволит взглянуть на фотоаппарат с другой стороны – не как на черный ящик со входным сигналом в виде света и выходом в виде готового изображения, а как на устройство, в котором вы разбираетесь и понимаете, куда дальше проходит свет и как получается итоговый результат. Компактные камеры затрагивать не будем, а поговорим о зеркальных и беззеркальных аппаратах.

Устройство зеркального фотоаппарата

Глобально фотоаппарат состоит из двух частей: фотоаппарата (его еще называют body — тушка) и объектива. Тушка выглядит следующим образом:

Тушка — вид спереди

Тушка – вид сверху

А вот так выглядит фотоаппарат в комплекте с объективом:

Теперь посмотрим на схематическое изображение фотоаппарата. Схема будет отображать структуру фотоаппарата “в разрезе” с такого же ракурса, как на последнем изображении. На схеме цифрами обозначены основные узлы, которые мы и будем рассматривать.


После настройки всех параметров, кадрирования и фокусировки фотограф нажимает кнопку спуска. При этом зеркало поднимается и поток света попадает на главный элемент фотоаппарата – матрицу.

    Как видите, поднимается зеркало и открывается затвор 1. Затвор в зеркалках механический и определяет время, в течении которого свет будет поступать на матрицу 2. Это время называется выдержкой. Также его называют временем экспонирования матрицы. Основные характеристики затвора: лаг затвора и его скорость. Лаг затвора определяет, как быстро откроются шторки затвора после нажатия кнопки спуска – чем меньше лаг, тем больше вероятность, что вон та проносящаяся мимо вас машина, которую вы пытаетесь снять, получится в фокусе, не смазана и скадрирована так, как вы это сделали при помощи видоискателя. У зеркалок и беззеркалок лаг затвора небольшой и измеряется в мс (миллисекундах). Скорость затвора определяет минимальное время, в течении которого будет открыт затвор – т.е. минимальную выдержку. На бюджетных камерах и камерах среднего уровня минимальная выдержка – 1/4000 с, на дорогих (в основном полнокадровых) – 1/8000 с. Когда зеркало поднято, свет не поступает ни на систему фокусировки, ни на пентапризму через фокусировочный экран, а попадает прямо на матрицу через открытый затвор. Когда вы делаете кадр зеркальным фотоаппаратом и при этом все время смотрите в видоискатель, то после нажатия на спуск вы на время увидите черное пятно, а не изображение. Это время определяется выдержкой. Если установить выдержку 5 с, к примеру, то после нажатия на кнопку спуска вы будете наблюдать черное пятно в течении 5 секунд. После окончания экспонирования матрицы зеркало возвращается в исходное положение и свет опять поступает в видоискатель. ЭТО ВАЖНО! Как видите, существуют два основных элемента, регулирующих поток света, попадающий на сенсор. Это диафрагма 2 (см. предыдущую схему), которая определяет количество пропускаемого света и затвор, который регулирует выдержку – время, за которое свет попадает на матрицу. Эти понятия лежат в основе фотографии. Их вариациями достигаются различные эффекты и важно понять их физический смысл.

    Матрица фотоаппарата 2 представляет собой микросхему со светочувствительными элементами (фотодиодами), которые реагируют на свет. Перед матрицей стоит светофильтр, который отвечает за получение цветной картинки. Двумя важными характеристиками матрицы можно считать ее размер и соотношение сигнал/шум. Чем выше и то, и другое, тем лучше. Подробнее о фотоматрицах мы поговорим в отдельной статье, т.к. это очень обширная тема.

С матрицы изображение поступает на АЦП (аналого-цифровой преобразователь), оттуда в процессор, обрабатывается (или не обрабатывается, если ведется съемка в RAW) и сохраняется на карту памяти.

Еще к важным деталям зеркалок можно отнести репетир диафрагмы. Дело в том, что фокусировка производится при полностью открытой диафрагме (насколько это возможно, определяется конструкцией объектива). Выставляя в настройках закрытую диафрагму, фотограф не видит изменений в видоискателе. В частности, ГРИП остается постоянной. Чтобы увидеть, каким будет выходной кадр, можно нажать на кнопку, диафрагма прикроется до установленного значения и вы увидите изменения до нажатия на кнопку спуска. Репетир диафрагмы устанавливается на большинстве зеркалок, но мало кто им пользуется: новички часто о нем не знают или не понимают назначения, а опытные фотографы примерно знают, какой будет ГРИП в тех или иных условиях и им легче сделать пробный кадр и в случае необходимости поменять настройки.

Устройство беззеркального фотоаппарата

Давайте сразу посмотрим на схему и будем обсуждать предметно.

Беззеркалки не в пример проще зеркалок и по сути являются их упрощенным вариантом. В них нет зеркала и сложной системы фазовой фокусировки, а также установлен видоискатель другого типа.

    Световой поток попадает через объектив на матрицу 1. Естественно, свет проходит через диафрагму в объективе. Она не обозначена на схеме, но, думаю, по аналогии с зеркалками вы догадались, где она расположена, ведь объективы зеркалок и беззеркалок по конструкции практически не отличаются (разве что размерами, байонетом и количеством линз). Более того, большинство объективов от зеркалок через переходники можно установить на беззеркалки. В беззеркалках нет затвора (точнее, он электронный), поэтому выдержка регулируется временем, в течении которого матрица включена (принимает фотоны). Что касается размера матрицы, то он соответствует формату Micro 4/3 или APS-C. Второй используется чаще и полностью соответствует матрицам, встраиваемым в зеркалки от бюджетного до продвинутого любительского сегмента. Сейчас стали появляться полнокадровые беззеркалки. Думаю, в будущем количество FF (Full Frame — полнокадровых) беззеркалок будет увеличиваться.

    На схеме цифрой 2 обозначен процессор, на который поступает информация, полученная матрицей.

    Под цифрой 3 изображен экран, на который выводится изображение в режиме реального времени (режим Live View). В отличии от зеркалок в беззеркалках это не сложно сделать, потому что световой поток не преграждается зеркалом, а беспрепятственно поступает на матрицу.

В общем все выглядит просто замечательно – убраны сложные конструктивные механические элементы (зеркало, датчики фокусировки, фокусировочный экран, пентапризма, затвор). Это значительно облегчило и удешевило производство, уменьшило в размере и весе аппараты, но также создало массу других проблем. Надеюсь, вы помните их из раздела о беззеркалках в статье о . Если нет, то сейчас мы их обсудим, попутно разбирая, какими техническими особенностями обусловлены эти недостатки.

Первая главная проблема – видоискатель. Так как свет попадает прямо на матрицу и никуда не отражается, то мы не можем видеть изображение напрямую. Мы видим лишь то, что попадает на матрицу, потом непонятным образом преобразуется в процессоре и выводится на непонятно какой экран. Т.е. в системе существует множество погрешностей. Мало того, у каждого элемента имеются свои задержки и изображение мы видим не сразу, что неприятно при съемке динамических сцен (из-за постоянно улучшающихся характеристик процессоров, экранов видоискателей и матриц это не так критично, но все равно имеет место быть). Изображение выводится на электронный видоискатель, у которого высокое разрешение, но которое все равно не сравнится с разрешением глаза. Электронные видоискатели имеют свойство слепнуть при ярком свете из-за ограниченной яркости и контрастности. Но более чем вероятно, что в будущем эту проблему преодолеют и чистое изображение, пропущенное через ряд зеркал канет лету также, как и “правильная пленочная фотография”.

Вторая проблема возникла из-за отсутствия фазовых датчиков автофокуса. Вместо них используется контрастный метод, который по контуру определяет, что должно быть в фокусе, а что – нет. При этом линзы объектива перемещаются на определенное расстояние, определяется контрастность сцены, линзы перемещаются опять и снова определяется контрастность. И так до тех пор, пока не будет достигнута максимальная контрастность и камера не сфокусируется. Это занимает слишком много времени и такая система менее точна, чем фазовая. Но в то же время контрастный автофокус представляет собой программную функцию и не занимает дополнительного места. Сейчас в матрицы беззеркалок уже научились встраивать фазовые датчики, получив гибридный автофокус. По скорости он сопоставим с системой автофокусировки у зеркалок, но пока что устанавливается только в избранных дорогих моделях. Думаю, в будущем эта проблема также будет решена.

Третья проблема представляет собой низкую автономность из-за напичканности электроникой, которая постоянно работает. Если фотограф работает с камерой, то все это время свет поступает на матрицу, постоянно обрабатывается процессором и выводится на экран или электронный видоискатель с высокой скоростью обновления – фотограф ведь должен видеть происходящее в реальном времени, а не в записи. Кстати, последний (я про видоискатель) тоже потребляет энергию, и не мало, т.к. его разрешение высоко и яркость с контрастностью должны быть на уровне. Отмечу, что при увеличении плотности пикселей, т.е. при уменьшении их размера при одном и том же энергопотреблении неизбежно снижается яркость и контрастность. Поэтому на питание качественных экранов с высоким разрешением расходуется много энергии. В сравнении с зеркалками количество кадров, которое можно сделать от одного заряда батареи, в несколько раз меньше. Пока что эта проблема критична, потому что значительно уменьшить энергопотребление не получится, а рассчитывать на прорыв в элементах питания не приходится. По крайней мере такая проблема долгое время существует на рынке ноутбуков, планшетов и смартфонов и ее решение успехом не увенчалось.

Четвертая проблема представляет собой как преимущество, так и недостаток. Речь идет об эргономике камеры. Вследствие избавления от “ненужных элементов” зеркалочного происхождения уменьшились размеры. Но беззеркалки пытаются позиционировать как замену зеркалкам и размеры матриц это подтверждают. Соответственно, используются объективы не самого маленького размера. Небольшая беззеркалка, похожая на цифрокомпакт, просто исчезает из поля зрения при использовании телевика (объектива с большим фокусным расстоянием, сильно приближающим объекты). Также многие элементы управления спрятаны в меню. В зеркалках они вынесены на корпус в виде кнопок. Да и просто приятнее работать с аппаратом, который нормально ложится в руку, не норовит выскользнуть и в котором можно наощупь, не задумываясь оперативно менять настройки. Но размер камеры – это палка о двух концах. С одной стороны большой размер обладает выше описанными преимуществами, а с другой — малая камера помещается в любой карман, ее можно чаще брать с собой и люди обращают на нее меньше внимания.

Что касается пятой проблемы, то она связана с оптикой. Пока что существует множество байонетов (типов креплений объективов к камерам). Под них сделано на порядок меньше объективов, чем под байонеты основных систем зеркалок. Проблема решается установкой переходников, с помощью которых на беззеркалках можно использовать абсолютное большинство зеркалочных объективов. Простите за каламбур)

Устройство компактного фотоаппарата

Что касается компактов, то у них масса ограничений, основным из которых является малый размер матрицы. Это не позволяет получить картинку с низким шумом, высоким динамическим диапазоном, качественно размыть фон и накладывает еще массу ограничений. Далее идет система автофокусировки. Если в зеркалках и беззеркалках используется фазовый и контрастный виды автофокуса, которые относятся к пассивному типу фокусировки, так как ничего не излучают, то в компактах используется активный автофокус. Камерой излучается импульс инфракрасного света, который отражается от объекта и попадает обратно в камеру. По времени прохождения этого импульса определяется расстояние до объекта. Такая система работает очень медленно и не работает на значительных расстояниях.

В компактах используется несменная низкокачественная оптика. Для них недоступен широкий набор аксессуаров, как для старших собратьев. Визирование происходит в режиме Live View по дисплею или через видоискатель. Последний представляет собой обычное стекло не очень хорошего качества, не связан с оптической системой фотоаппарата, из-за чего возникает неправильное кадрирование. Особенно сильно это проявляется при съемке близлежащих объектов. Продолжительность работы компактов от одного заряда невелика, корпус маленький и его эргономичность еще намного хуже, чем у беззеркалок. Количество доступных настроек ограничено и они спрятаны в глубине меню.

Если говорить об устройстве компактов, то оно простое и представляет собой упрощенную беззеркалку. Здесь меньше и хуже матрица, другой тип автофокуса, нет нормального видоискателя, отсутствует возможность замены объективов, невысокая продолжительность работы от аккумулятора и непродуманная эргономика.

Вывод

Вкратце мы рассмотрели устройство фотоаппаратов различных типов. Думаю, теперь вы имеете общее представление о внутреннем строении камер. Эта тема очень обширна, но для понимания и управления процессами, происходящими при съемке теми или иными фотоаппаратами при различных настройках и с разной оптикой вышеизложенной информации, думаю, будет достаточно. В дальнейшем мы все-таки поговорим об отдельных важнейших элементах: матрице, системах автофокусировки и объективах. А пока давайте на этом остановимся.

За время своего существования фотография проникла буквально во все области человеческой деятельности. Для одних людей - это профессия, для других - просто развлечение, для третьих - верный помощник в работе. Фотография оказала огромное влияние на развитие современной культуры, науки и техники. В настоящее время фотография - одна из бурно развивающихся современных информационных технологий.

К фототоварам относят фотоаппараты, светочувствительные материалы, фотопринадлежности.

Современный фотоаппарат представляет собой электронный оптико-механический прибор для создания оптического (светового) изображения объекта на поверхности светочувствительного материала (фотопленки или электронно-оптического преобразователя).

Основными конструктивными узлами фотоаппарата являются корпус, объектив, диафрагма, затвор, видоискатель, фокусировочное и экспонометрическое устройство, электронная лампа-вспышка, индикаторное устройство, счетчик кадров.

Для регистрации и хранения светового изображения в пленочных фотоаппаратах используется фотопленка. В цифровых фотоаппаратах для регистрации изображения используется электронно-оптический преобразователь (матрица, состоящая из большого количества светочувствительных элементов-пикселей), а для хранения информации об изображении - флэш-память (энергонезависимое устройство хранения оцифрованных изображений).

Пиксель является наименьшим элементом цифрового изображения. Миллион пикселей называют мегапикселем. Пиксели реагируют на свет и создают электрический заряд, величина которого пропорциональна количеству попавшего света. Для формирования сигналов о цветном изображении, микроскопические элементы (пиксели) светочувствительной матрицы покрыты микросветофильтрами красного, зеленого и синего цветов и объединены в группы, что позволяет получить электронную копию цветного изображения.

Электрические сигналы считываются с пикселей, преобразуются в аналого-цифровом преобразователе в двоичные цифровые данные и записываются во флэш-память. Электронно-оптический преобразователь (ЭОП) характеризуется разрешающей способностью (в мегапикселях) и размером по диагонали (в дюймах). Разрешающая способность определяется произведением количества пикселей по горизонтали и вертикали. Например, обозначение 2048 х 1536 пикселей соответствует разрешению в 3,2 мегапикселя. Наиболее распространены матрицы с диагональю 1/2; 1/3; 1/4 дюйма.

Корпус является несущей частью фотоаппарата, в которой монтируются все узлы и механизмы фотоаппарата и размещается светочувствительный материал.

На передней панели корпуса находится объектив. Объектив может крепиться к корпусу жестко или быть съемным. В последнем случае крепление объектива может быть резьбовым или байонетным. За объективом пленочного фотоаппарата, со стороны задней панели корпуса, имеется кадровая рамка, просвет в которой называется кадровым окном. Кадровое окно определяет размеры поля изображения (формат кадра) на светочувствительном материале.

Объектив представляет собой систему оптических линз, заключенных в общую оправу и предназначенную для формирования светового изображения объекта съемки и проецирования его на поверхность светочувствительного материала. От свойств объектива, а также светочувствительного материала, в значительной степени зависит качество получаемого изображения. В оправу объектива вводятся диафрагма, механизмы фокусировки и изменения фокусного расстояния.

Диафрагма (рис.) предназначена для изменения величины светового отверстия объектива.

Рис. Устройство и принцип действия диафрагмы

С помощью диафрагмы регулируют освещенность светочувствительного материала и изменяют глубину резкости изображаемого пространства. Отверстие диафрагмы образуется несколькими серповидными лепестками (ламелями), расположенными симметрично вокруг оптической оси объектива.

В фотоаппаратах может применяться ручное и автоматическое управление диафрагмой.

Ручное управление диафрагмой осуществляется кольцом, расположенным на внешней поверхности оправы объектива, на котором нанесена шкала диафрагменных чисел. Ряд значений диафрагм нормирован числами: 1; 1,4; 2; 2,8; 4; 5,6; 8; 11; 16; 22. Переход от одного значения диафрагменного числа к соседнему изменяет количество проходящего через объектив света вдвое - пропорционально изменению площади светового отверстия.

Автоматическое управление диафрагмой осуществляется экспонометрическим устройством фотоаппарата в зависимости от условий съемки (яркости снимаемого объекта, светочувствительности фотопленки) и выдержки.

Фокусировочное устройство объектива предназначено для совмещения создаваемого объективом оптического изображения с плоскостью светочувствительного материала при различных расстояниях до объекта съемки.

Фокусировка объектива (наводка на резкость) осуществляется путем перемещения объектива или какой-либо его части вдоль его оптической оси. В современных фотоаппаратах фокусировка объектива возможна в пределах от фотографической бесконечности до некоторого минимального расстояния, называемого ближним пределом фокусировки. Ближний предел фокусировки зависит от величины максимального выдвижения объектива.

В фотоаппаратах может использоваться ручная и автоматизированная система фокусировки. В некоторых простейших компактных фотоаппаратах объективы не имеют механизма фокусировки. Такие объективы, получившие название фикс-фокус, имеют большую глубину резкости и сфокусированы на некоторое постоянное расстояние.

Механизм изменения фокусного расстояния объектива позволяет изменять угол поля зрения объектива и масштаб изображения на светочувствительном материале посредством изменения фокусного расстояния объектива. Механизмом изменения фокусного расстояния оснащаются объективы дорогих фотоаппаратов среднего и высокого класса.

Затвор представляет собой механизм фотоаппарата, автоматически обеспечивающий пропускание световых лучей к светочувствительному материалу в течение заданного промежутка времени (выдержки) при нажатии на кнопку затвора. Ряд числовых значений выдержек, автоматически устанавливаемых затвором, нормирован следующими числами (в секундах): 1/4000; 1/2000; 1/1000; 1/500; 1/250; 1/125; 1/60; 1/30; 1/15; 1/8; 1/4; 1/2; 1; 2; 3; 4. Различают модели фотоаппаратов с постоянной, ручной и автоматической установкой выдержки. По принципу действия затворы, применяемые в современных фотоаппаратах, подразделяются на электронно-механические, электронные и электронно-оптические.

Электронно-механический затвор состоит из световых заслонок, перекрывающих световой поток, электронного реле времени, отрабатывающего установленное время экспонирования, и электромагнитного привода, обеспечивающего перемещение световых заслонок. К электронно-механическим затворам относят центральные и щелевые затворы. В центральных затворах световые заслонки в виде тонких металлических лепестков открывают световое отверстие объектива от центра (от оптической оси) к краям, а закрывают в обратном направлении, подобно диафрагме (рис.)

Рис. Схема устройства и действия центрального затвора

Центральные затворы располагаются, как правило, между линзами объектива или непосредственно за объективом и применяются в компактных пленочных и цифровых фотоаппаратах, имеющих жестко встроенный несъемный объектив.

Особую группу центральных затворов представляют затворы-диафрагмы, у которых функции затвора и диафрагмы объединены в одном механизме с регулированием величины и длительности открытия светового отверстия. Они способны отрабатывать выдержки до 1/500 с.

Щелевые затворы (рис.) пропускают световой поток к светочувствительному материалу через щель, образованную двумя световыми заслонками в виде тканевых шторок или металлических ламелей. При срабатывании затвора, шторки (или две группы ламелей) перемещаются одна за другой, с определенным интервалом времени, вдоль или поперек кадрового окна. Одна из световых заслонок открывает кадровое окно, а другая - закрывает его.

Выдержка зависит от ширины щели. Щелевые затворы способны отрабатывать более короткие выдержки (в 1/1000 с и короче) и применяются в фотоаппаратах, имеющих съемный объектив.

Рис. Схема устройства щелевого затвора

Электронный затвор применяется в цифровых фотоаппаратах. Он представляет собой электронный переключатель, который включает (или выключает) ЭОП в определенный момент времени с одновременным считыванием зафиксированной электронной информации. Электронный затвор способен отработать выдержку в 1/4000 и даже 1/8000 с. Электронный затвор срабатывает бесшумно и без вибраций.

В некоторых цифровых фотоаппаратах наряду с электронным применяется электронно-механический или электронно-оптический затвор.

Электронно-оптический (жидкокристаллический) затвор представляет собой жидкий кристалл, расположенный между двумя параллельными стеклянными поляризованными пластинами, через который свет проходит на электронно-оптический преобразователь (ЭОП). При подаче напряжения через тонкое прозрачное электропроводное напыление к внутренней поверхности стеклянных пластин возникает электрическое поле, изменяющее на 90° плоскость поляризации жидкого кристалла и соответственно обеспечивающее его максимальную непрозрачность. Таким образом, путем подачи напряжения жидкокристаллический затвор закрывается, а при отсутствии напряжения (выключении) - открывается. Электронно-оптический затвор отличается простотой и надежностью, так как отсутствуют механические компоненты.

Видоискатель служит для визуальной компоновки кадра. Для правильного определения границ кадра необходимо, чтобы угловое поле зрения видоискателя соответствовало угловому полю зрения съемочного объектива, а оптическая ось видоискателя совпадала с оптической осью съемочного объектива.

При несовпадении оптической оси видоискателя с оптической осью съемочного объектива границы изображения, наблюдаемого в видоискателе, не совпадают с границами кадра на светочувствительном материале (явление параллакса). При фотографировании удаленных объектов параллакс незаметен, но возрастает по мере уменьшения дистанции съемки.

Современные фотоаппараты могут иметь телескопический, зеркальный (перископический) видоискатель или жидкокристаллическую панель.

Компактные фотоаппараты оснащаются телескопическим видоискателем, который располагается в корпусе фотоаппарата рядом с объективом.

Идентификационным признаком фотоаппаратов с телескопическим видоискателем является наличие на передней панели корпуса фотоаппарата окна видоискателя.

В зеркальных видоискателях (рис.) съемочный объектив является одновременно и объективом видоискателя. Такая схема видоискателя обеспечивает беспараллаксное визирование. Оптическое изображение объекта съемки, видимое в окуляре видоискателя и получаемое на светочувствительном материале, идентичны друг другу.

Рис. Схема устройства фотоаппарата с зеркальным видоискателем: а - с убирающимся зеркалом; б - с призмой-делителем

Фотоаппараты, имеющие зеркальный видоискатель, получили название зеркальных (SLR - Single Lens Reflex). Идентификационным признаком однообъективного зеркального фотоаппарата (видоискателя) является отсутствие на передней панели корпуса фотоаппарата окна видоискателя и призматическая форма верхней панели корпуса.

Экспонометрическое устройство в современных фотоаппаратах обеспечивает автоматическое или полуавтоматическое определение и установку экспозиционных параметров - выдержки и диафрагменного числа в зависимости от светочувствительности фотопленки и освещенности (яркости) объекта съемки.

Экспонометрическое устройство состоит из светоприемника, электронной системы управления, индикатора, а также исполнительных органов, управляющих работой затвора, диафрагмы объектива и согласующих работу затвора и лампы-вспышки. В качестве светоприемника в большинстве современных фотоаппаратов используют кремниевые фото-диоды. В компактных фотоаппаратах, светоприемник экспонометрического устройства располагается на передней панели корпуса, рядом с объективом.

В зеркальных фотоаппаратах высокого класса светоприемник размещают внутри корпуса фотоаппарата, за объективом, что позволяет автоматически учитывать реальное светопропускание объектива (реальную освещенность светочувствительного материала). Фотоаппараты с замером освещенности внутри корпуса за съемочным объективом имеют международное обозначение TTL или TEE.

Механизм транспортировки пленки служит для перемещения пленки на один кадр, точной ее установки перед объективом и обратной перемотки пленки в кассету после экспонирования. Механизм транспортировки пленки связан со счетчиком кадров, который предназначен для отсчета экспонированных или неэкспонированных кадров.

Фотовспышка предназначена для кратковременного освещения объекта съемки при фотографировании в условиях недостаточной естественной освещенности, съемке объекта против света, а также подсветки теневых участков объекта при ярком солнце.

Индикаторное устройство служит для индикации режимов съемки и контроля за работой фотоаппарата. В качестве индикаторных устройств в фотоаппаратах используются жидкокристаллические дисплеи (LCD - индикаторы), светодиоды и стрелочные индикаторы.

Каждый момент этой жизни бесценен вне зависимости от того грустный он или весёлый. Потому что это и есть жизнь. И нужно наслаждаться этими самыми моментами. Проблема лишь в том, что мы не настолько знаем свой мозг, чтобы уместить в нем все воспоминания. Но человек и вечный двигатель прогресса - лень, сделали такую чудо-штуку как фотоаппарат. А что же это такое. В моём понимании - это есть некое устройство, позволяющее выбирать и фиксировать на каком-либо носителе выбранное изображение, план местности, проекцию пространства - как угодно называйте.

Итак, носители есть разные, и в зависимости от его типа происходит первое деление в классификации фотоаппаратов.
Итак это плёночные и цифровые (возможно есть еще и другие)

В плёночных фотоаппаратах носителем инф-ции является плёнка. Плёнка - это кусок пластика(полиэстер, нитрат или ацетат целлюлозы) и нанесённая на него фотоэмульсия. Фотоэмульсия - это химический состав, который обладает светочувствитльностью. То есть в зависимости от степени освещения(то бишь от величины потока электро-магнитной волны) изменяет свои свойства, образуя скрытое изображение. Его потом преобразуют в явное. Фотоэмульсия состоит из галогенидов серебра в растворе защитного коллоида.

В цифровых фотоаппаратах изображение попадает на матрицу. Матрица - это интегральная микросхема с фотодиодами. Фотодиоды преобразуют свет в цифровой сигнал.

Одна из основных составляющих частей камеры - видоискатель. Видоискатель позволяет вам «прицеливаться» на объект съёмки. По типу видоискателя фотоаппараты условно делят на зеркальные, псевдозеркальные и «мыльницы „. У мыльниц в качестве видоискателя выступает маленький экран на задней стороне. Псевдозеркальные - те же мыльницы, но с расширенным количеством функций, внешним видом, напоминающим зеркалку и дыркой над экраном - глазком для прицеливания(кстати в глазке тоже экран). В отличии от зеркальных не имеют собственно зеркала и призмы, управление в основном электронное, размер матрицы небольшой, поэтому идет больше шумов. Но по сравнению с мыльницами имеют хорошую оптику, позволяют вручную настраивать параметры съемки.

Устройство зеркального фотоаппарата

Итак, основные элемненты цифровой зеркальной камеры(далее ЦЗК) приведены на следующем рисунке:

Ингридиенты:

1. Объектив. То что ловит и пропускает через систему линз изображение.
2. Собственно зеркало. Здесь оно показано в положении т.н. визирования, т.е. когда мы ловим объект.
3. Затвор. То что закрывает матрицу
4. Матрица. Светочувствительный материал
5. Зеркало(еще одно). Здесь оно в положении фотографирования
6. Линза видоискателя.
7. Пентапризма.
8. Окуляр видоискателя

Точечной линией показано, как идет изображение в положении визирования. Сначала свет проходит через систему линз объектива. Попадая в корпус камеры он отражается от зеркала(2), и идет через матовую линзу в пентапризму(7). Пентапризма(7) делает переворот изображения в его естественное(для нас) положение. Если бы не пентапрзма, то в окуляре видоискателя мы бы видели изображение вверх ногами.
Когда мы прицелились на объект и нажимаем кнопокочку съемки, то происходит следующее: Зеркало(2) убирается, затвор(3) поднимается(сворачивается, телепортируется - нужное подчеркнуть) на время выдержки и свет идет прямёхонько на матрицу, которая в течении времени выдержки облучается светом и формирует изображение.

Ноутбуки